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7

Hankel Transforms and Their Applications

“In most sciences one generation tears down what another has
built, and what one has established, another undoes. In mathemat-
ics alone each generation adds a new storey to the old structure.”

Hermann Hankel

“I have always regarded mathematics as an object of amusement
rather than of ambition, and I can assure you that I enjoy the
works of others much more than my own.”

Joseph-Louis Lagrange

7.1 Introduction

Hermann Hankel (1839–1873), a German mathematician, is remembered for
his numerous contributions to mathematical analysis including the Hankel
transformation, which occurs in the study of functions which depend only on
the distance from the origin. He also studied functions, now named Hankel
functions or Bessel functions of the third kind. The Hankel transform involv-
ing Bessel functions as the kernel arises naturally in axisymmetric problems
formulated in cylindrical polar coordinates. This chapter deals with the defini-
tion and basic operational properties of the Hankel transform. A large number
of axisymmetric problems in cylindrical polar coordinates are solved with the
aid of the Hankel transform. The use of the joint Laplace and Hankel trans-
forms is illustrated by several examples of applications to partial differential
equations.
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344 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

7.2 The Hankel Transform and Examples

We introduce the definition of the Hankel transform from the two-dimensional
Fourier transform and its inverse given by

F {f(x, y)} = F (k, l) =
1

2π

∞∫

−∞

∞∫

−∞
exp{−i(κ · r)}f(x, y) dx dy, (7.2.1)

F −1 {F (k, l)} = f(x, y) =
1

2π

∞∫

−∞

∞∫

−∞
exp{i(κ · r)}F (k, l) dk dl, (7.2.2)

where r=(x, y) and κ=(k, l). Introducing polar coordinates (x, y)=r(cos θ,
sin θ) and (k, l)= κ(cosφ, sinφ), we find κ · r= κr cos(θ − φ) and then

F (κ, φ) =
1

2π

∞∫

0

r dr

2π∫

0

exp[−iκ r cos(θ− φ)]f(r, θ)dθ. (7.2.3)

We next assume f(r, θ) = exp(inθ)f(r), which is not a very severe restric-
tion, and make a change of variable θ− φ=α− π

2 to reduce (7.2.3) to the
form

F (κ, φ) =
1

2π

∞∫

0

rf(r)dr

×
2π+φ0∫

φ0

exp
[
in

(
φ− π

2

)
+ i(nα− κr sinα)

]
dα, (7.2.4)

where φ0 =
(π
2
− φ

)
.

Using the integral representation of the Bessel function of order n

Jn(κr) =
1

2π

2π+φ0∫

φ0

exp[i(nα− κr sinα)]dα (7.2.5)

integral (7.2.4) becomes

F (κ, φ) = exp
[
in

(
φ− π

2

)] ∞∫

0

rJn(κr)f(r)dr (7.2.6)

= exp
[
in

(
φ− π

2

)]
f̃n(κ), (7.2.7)



Hankel Transforms and Their Applications 345

where f̃n(κ) is called the Hankel transform of f(r) and is defined formally by

Hn {f(r)}= f̃n(κ) =

∞∫

0

rJn(κr)f(r) dr. (7.2.8)

Similarly, in terms of the polar variables with the assumption f(x, y) =
f(r, θ) = einθf(r) with (7.2.7), the inverse Fourier transform (7.2.2) becomes

einθf(r) =
1

2π

∞∫

0

κ dκ

2π∫

0

exp[iκr cos(θ − φ)]F (κ, φ)dφ

=
1

2π

∞∫

0

κ f̃n(κ)dκ

2π∫

0

exp
[
in

(
φ− π

2

)
+ iκr cos(θ − φ)

]
dφ,

which is, by the change of variables θ− φ=−
(
α+

π

2

)
and θ0 =−

(
θ+

π

2

)
,

=
1

2π

∞∫

0

κf̃n(κ)dκ

2π+θ0∫

θ0

exp[in(θ+ α)− iκr sinα]dα

= einθ
∞∫

0

κJn(κr)f̃n(κ)dκ, by (7.2.5). (7.2.9)

Thus, the inverse Hankel transform is defined by

H −1
n

[
f̃n(κ)

]
= f(r) =

∞∫

0

κJn(κr)f̃n(κ)dκ. (7.2.10)

Instead of f̃n(κ), we often simply write f̃(κ) for the Hankel transform speci-
fying the order. Integrals (7.2.8) and (7.2.10) exist for certain large classes of
functions, which usually occur in physical applications.

Alternatively, the famous Hankel integral formula (Watson, 1944, p. 453)

f(r) =

∞∫

0

κ Jn(κr)dκ

∞∫

0

pJn(κp)f(p)dp, (7.2.11)

can be used to define the Hankel transform (7.2.8) and its inverse (7.2.10).
In particular, the Hankel transforms of the zero order (n=0) and of order

one (n=1) are often useful for the solution of problems involving Laplace’s
equation in an axisymmetric cylindrical geometry.

Example 7.2.1 Obtain the zero-order Hankel transforms of
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(a) r−1 exp(−ar), (b)
δ(r)

r
, (c) H(a− r),

where H(r) is the Heaviside unit step function.

We have

(a) f̃(κ) =H0

{
1

r
exp(−ar)

}
=

∞∫

0

exp(−ar)J0(κr)dr= 1√
κ2 + a2

.

(b) f̃(κ) =H0

{
δ(r)

r

}
=

∞∫

0

δ(r)J0(κr)dr=1.

(c) f̃(κ) =H0{H(a− r)} =

a∫

0

rJ0(κr)dr=
1

κ2

aκ∫

0

pJ0(p)dp

=
1

κ2
[pJ1(p)]

aκ
0 =

a

κ
J1(aκ).

Example 7.2.2 Find the first-order Hankel transforms of

(a) f(r) = e−ar, (b) f(r) =
1

r
e−ar, (c) f(r) =

sin ar

r
.

We can write

(a) f̃(κ) =H1{e−ar}=
∞∫

0

re−arJ1(κr)dr=
κ

(a2 + κ2)
3
2

.

(b) f̃(κ) =H1

{
a−ar

r

}
=

∞∫

0

e−arJ1(κr)dr=
1

κ

[
1− a(κ2 + a2)−

1
2

]
.

(c) f̃(κ) =H1

{
sinar

r

}
=

∞∫

0

sin ar J1(κr) dr=
aH(κ− a)

κ(κ2 − a2)
1
2

.

Example 7.2.3 Find the nth (n>−1) order Hankel transforms of

(a) f(r) = rnH(a− r), (b) f(r) = rn exp(−ar2).
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Here we have, for n>−1,

(a) f̃(κ) = Hn [r
nH(a− r)] =

a∫

0

rn+1Jn(κr)dr=
an+1

κ
Jn+1(aκ).

(b) f̃(κ) = Hn

[
rn exp(−ar2)]=

∞∫

0

rn+1Jn(κr) exp(−ar2)dr

=
κn

(2a)n+1
exp

(
−κ

2

4a

)
.

7.3 Operational Properties of the Hankel Transform

THEOREM 7.3.1 (Scaling).

If Hn{f(r)}= f̃n(κ), then

Hn{f(ar)}= 1

a2
f̃n

(κ
a

)
, a > 0. (7.3.1)

PROOF We have, by definition,

Hn{f(ar)} =

∞∫

0

rJn(κr)f(ar)dr

=
1

a2

∞∫

0

sJn

(κ
a
s
)
f(s)ds=

1

a2
f̃n

(κ
a

)
.

THEOREM 7.3.2 (Parseval’s Relation).

If f̃(κ) =Hn{f(r)} and g̃(κ) =Hn{g(r)}, then
∞∫

0

rf(r)g(r)dr =

∞∫

0

κf̃(κ)g̃(κ)dκ. (7.3.2)
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PROOF We proceed formally to obtain

∞∫

0

κf̃(κ)g̃(κ)dκ=

∞∫

0

κf̃(κ)dκ

∞∫

0

rJn(κr)g(r)dr,

which is, interchanging the order of integration,

=

∞∫

0

rg(r)dr

∞∫

0

κJn(κr)f̃ (κ)dκ

=

∞∫

0

rg(r)f(r)dr.

THEOREM 7.3.3 (Hankel Transforms of Derivatives).
If f̃n(κ) =Hn{f(r)}, then

Hn{f ′(r)} =
κ

2n

[
(n− 1)f̃n+1(κ)− (n+ 1)f̃n−1(κ)

]
, n≥ 1, (7.3.3)

H1{f ′(r)} = −κf̃0(κ), (7.3.4)

provided [rf(r)] vanishes as r→ 0 and r→∞.

PROOF We have, by definition,

Hn{f ′(r)}=
∞∫

0

rJn(κr)f
′(r)dr

which is, integrating by parts,

= [rf(r)Jn(κr)]
∞
0 −

∞∫

0

f(r)
d

dr
[rJn(κr)]dr. (7.3.5)

We now use the properties of the Bessel function

d

dr
[rJn(κr)] = Jn(κr) + rκJ ′

n(κr) = Jn(κr) + rκJn−1(κr)− nJn(κr)

= (1− n)Jn(κr) + rκJn−1(κr). (7.3.6)

In view of the given condition, the first term of (7.3.5) vanishes as r→ 0
and r→∞, and the derivative within the integral in (7.3.5) can be replaced
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by (7.3.6) so that (7.3.5) becomes

Hn{f ′(r)}= (n− 1)

∞∫

0

f(r)Jn(κr)dr − κf̃n−1(κ). (7.3.7)

We next use the standard recurrence relation for the Bessel function

Jn(κr) =
κr

2n
[Jn−1(κr) + Jn+1(κr)]. (7.3.8)

Thus, (7.3.7) can be rewritten as

Hn[f
′(r)] = −κf̃n−1(κ) + κ

(
n− 1

2n

)⎡
⎣

∞∫

0

rf(r){Jn−1(κr) + Jn+1(κr)}dr
⎤
⎦

= −κf̃n−1(κ) + κ

(
n− 1

2n

)[
f̃n−1(κ) + f̃n+1(κ)

]

=
( κ

2n

) [
(n− 1)f̃n+1(κ)− (n+ 1)f̃n−1(κ)

]
.

In particular, when n=1, (7.3.4) follows immediately.
Similarly, repeated applications of (7.3.3) lead to the following result

Hn{f ′′(r)} =
κ

2n

[
(n− 1)Hn+1{f ′(r)} − (n+ 1)Hn−1{f ′(r)}]

=
κ2

4

[(
n+ 1

n− 1

)
f̃n−2(κ)− 2

(
n2 − 3

n2 − 1

)
f̃n(κ)

+

(
n− 1

n+ 1

)
f̃n+2(κ)

]
. (7.3.9)

THEOREM 7.3.4 If Hn{f(r)}= f̃n(κ), then

Hn

{(
∇2 − n2

r2

)
f(r)

}
=Hn

{
1

r

d

dr

(
r
df

dr

)
− n2

r2
f(r)

}
=−κ2f̃n(κ),

(7.3.10)
provided both rf ′(r) and rf(r) vanish as r→ 0 and r→∞.

PROOF We have, by definition (7.2.8),

Hn

{
1

r

d

dr

(
r
df

dr

)
− n2

r2
f(r)

}
=

∞∫

0

Jn(κr)

[
d

dr

(
r
df

dr

)]
dr

−
∞∫

0

n2

r2
[rJn(κr)]f(r)dr,
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which is, invoking integration by parts,

=

[(
r
df

dr

)
Jn(κr)

]∞
0

− κ

∞∫

0

r
df

dr
J ′
n(κr)dr −

∞∫

0

n2

r2
[rJn(κr)]f(r)dr,

which is, by replacing the first term with zero because of the given assumption,
and by invoking integration by parts again,

=−[κrf(r)J ′
n(κr)

]∞
0

+

∞∫

0

d

dr

[
κrJ ′

n(κr)
]
f(r)dr −

∞∫

0

n2

r2
[rJn(κr)]f(r)dr.

We use the given assumptions and Bessel’s differential equation,

d

dr

[
κr J ′

n(κr)
]
+ r

(
κ2 − n2

r2

)
Jn(κr) = 0, (7.3.11)

to obtain

Hn

{(
∇2 − n2

r2

)
f(r)

}
=−

∞∫

0

(
κ2 − n2

r2

)
rf(r)Jn(κr)dr

−
∞∫

0

n2

r2
[rf(r)] Jn(κr) dr

=−κ2
∞∫

0

rJn(κr)f(r)dr =−κ2Hn[f(r)] =−κ2f̃n(κ).

This proves the theorem.
In particular, when n=0 and n=1, we obtain

H0

{
1

r

d

dr

(
r
df

dr

)}
= −κ2f̃0(κ), (7.3.12)

H1

{
1

r

d

dr

(
r
df

dr

)
− 1

r2
f(r)

}
= −κ2f̃1(κ). (7.3.13)

Results (7.3.10), (7.3.12), and (7.3.13) are widely used for finding solutions
of partial differential equations in axisymmetric cylindrical configurations. We
illustrate this point by considering several examples of applications.

7.4 Applications of Hankel Transforms to Partial
Differential Equations

The Hankel transforms are extremely useful in solving a variety of partial
differential equations in cylindrical polar coordinates. The following examples
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illustrate applications of the Hankel transforms. The examples given here are
only representative of a whole variety of physical problems that can be solved
in a similar way.

Example 7.4.1 (Free Vibration of a Large Circular Membrane).
Obtain the solution of the free vibration of a large circular elastic membrane
governed by the initial value problem

c2
(
∂2u

∂r2
+

1

r

∂u

∂r

)
=
∂2u

∂t2
, 0<r <∞, t > 0, (7.4.1)

u(r, 0)= f(r), ut(r, 0)= g(r), for 0≤ r <∞, (7.4.2ab)

where c2 = (T/ρ)= constant, T is the tension in the membrane, and ρ is the
surface density of the membrane.

Application of the zero-order Hankel transform with respect to r

ũ(κ, t) =

∞∫

0

r J0(κr)u(r, t)dr, (7.4.3)

to (7.4.1)–(7.4.2ab) gives
d2ũ

dt2
+ c2κ2ũ=0, (7.4.4)

ũ(κ, 0)= f̃(κ), ũt(κ, 0)= g̃(κ). (7.4.5ab)

The general solution of this transformed system is

ũ(κ, t) = f̃(κ) cos(cκt) + (cκ)−1 g̃(κ) sin(cκt). (7.4.6)

The inverse Hankel transform leads to the solution

u(r, t) =

∞∫

0

κ f̃(κ) cos(cκt)J0(κr)dκ

+
1

c

∞∫

0

g̃(κ) sin(cκt)J0(κr)dκ. (7.4.7)

In particular, we consider

u(r, 0)= f(r) =Aa(r2 + a2)−
1
2 , ut(r, 0)= g(r) = 0, (7.4.8ab)

so that g̃(κ)≡ 0 and

f̃(κ) =Aa

∞∫

0

r(a2 + r2)−
1
2 J0(κr)dr=

Aa

κ
e−aκ, by Example 7.2.1(a).
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Thus, the formal solution (7.4.7) becomes

u(r, t) = Aa

∞∫

0

e−aκJ0(κr) cos(cκt)dκ=AaRe

∞∫

0

exp[−κ(a+ ict)]J0(κr)dκ

= AaRe
{
r2 + (a+ ict)2

}− 1
2 , by Example 7.2.1(a). (7.4.9)

Example 7.4.2 (Steady Temperature Distribution in a Semi-Infinite Solid
with a Steady Heat Source).
Find the solution of the Laplace equation for the steady temperature distri-
bution u(r, z) with a steady and symmetric heat source Q0q(r):

urr +
1

r
ur + uzz = −Q0q(r), 0< r<∞, 0<z <∞, (7.4.10)

u(r, 0) = 0, 0<r <∞, (7.4.11)

where Q0 is a constant. This boundary condition represents zero temperature
at the boundary z=0.

Application of the zero-order Hankel transform to (7.4.10) and (7.4.11) gives

d2ũ

dz2
− κ2ũ=−Q0q̃(κ), ũ(κ, 0)= 0.

The bounded general solution of this system is

ũ(κ, z) =A exp(−κz) + Q0

κ2
q̃(κ),

where A is a constant to be determined from the transformed boundary con-
dition. In this case

A=−Q0

κ2
q̃(κ).

Thus, the formal solution is

ũ(κ, z)=
Q0 q̃(κ)

κ2
(1− e−κz). (7.4.12)

The inverse Hankel transform yields the exact integral solution

u(r, z)=Q0

∞∫

0

q̃(κ)

κ
(1− e−κz)J0(κr)dκ. (7.4.13)
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Example 7.4.3 (Axisymmetric Diffusion Equation).
Find the solution of the axisymmetric diffusion equation

ut= κ

(
urr +

1

r
ur

)
, 0< r<∞, t > 0, (7.4.14)

where κ(> 0) is a diffusivity constant and

u(r, 0)= f(r), for 0<r <∞. (7.4.15)

We apply the zero-order Hankel transform defined by (7.4.3) to obtain

dũ

dt
+ k2κũ=0, ũ(k, 0)= f̃(k),

where k is the Hankel transform variable. The solution of this transformed
system is

ũ(k, t) = f̃(k) exp(−κk2t). (7.4.16)

Application of the inverse Hankel transform gives

u(r, t) =

∞∫

0

kf̃(k)J0(kr)e
−κk2tdk=

∞∫

0

k

⎡
⎣

∞∫

0

lJ0(kl)f(l)dl

⎤
⎦ e−κk2tJ0(kr)dk

which is, interchanging the order of integration,

=

∞∫

0

l f(l)dl

∞∫

0

k J0(kl)J0(kr) exp(−κk2t)dk. (7.4.17)

Using a standard table of integrals involving Bessel functions, we state

∞∫

0

kJ0(kl)J0(kr) exp(−k2κt)dk= 1

2κt
exp

[
− (r2 + l2)

4κt

]
I0

(
rl

2κt

)
, (7.4.18)

where I0(x) is the modified Bessel function and I0(0)= 1. In particular, when
l=0, J0(0)= 1 and integral (7.4.18) becomes

∞∫

0

kJ0(kr) exp(−k2κt)dk= 1

2κt
exp

(
− r2

4κt

)
. (7.4.19)

We next use (7.4.18) to rewrite (7.4.17) as

u(r, t) =
1

2κt

∞∫

0

lf(l)I0

(
rl

2κt

)
exp

[
− (r2 + l2)

4κt

]
dl. (7.4.20)
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We now assume f(r) to represent a heat source concentrated in a circle of
radius a and allow a→ 0 so that the heat source is concentrated at r=0 and

lim
a→0

2π

a∫

0

rf(r)dr =1.

Or, equivalently,

f(r) =
1

2π

δ(r)

r
,

where δ(r) is the Dirac delta function.
Thus, the final solution due to the concentrated heat source at r=0 is

u(r, t) =
1

4πκt

∞∫

0

δ(l)I0

(
rl

2κt

)
exp

[
−r

2 + l2

4κt

]
dl

=
1

4πκt
exp

(
− r2

4κt

)
. (7.4.21)

Example 7.4.4 (Axisymmetric Acoustic Radiation Problem).
Obtain the solution of the wave equation

c2
(
urr +

1

r
ur + uzz

)
= utt, 0<r<∞, z > 0, t > 0, (7.4.22)

uz = F (r, t) on z=0, (7.4.23)

where F (r, t) is a given function and c is a constant. We also assume that the
solution is bounded and behaves as outgoing spherical waves.

We seek a steady-state solution for the acoustic radiation potential u=
eiωtφ(r, z) with F (r, t) = eiωtf(r), so that φ satisfies the Helmholtz equation

φrr +
1

r
φr + φzz +

(
ω2

c2

)
φ=0, 0<r <∞, z > 0, (7.4.24)

with the boundary condition

φz = f(r) on z=0, (7.4.25)

where f(r) is a given function of r.
Application of the Hankel transformH0{φ(r, z)}= φ̃(k, z) to (7.4.24)–(7.4.25)

gives
φ̃zz = κ2φ̃, z > 0,

φ̃z = f̃(k), on z=0,
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where

κ=

(
k2 − ω2

c2

) 1
2

.

The solution of this differential system is

φ̃(k, z) =− 1

κ
f̃(k) exp(−κz), (7.4.26)

where κ is real and positive for k >ω/c, and purely imaginary for k <ω/c.
The inverse Hankel transform yields the formal solution

φ(r, z) =−
∞∫

0

k

κ
f̃(k) J0(kr) exp(−κz)dk. (7.4.27)

Since the exact evaluation of this integral is difficult for an arbitrary f̃(k), we
choose a simple form of f(r) as

f(r) =AH(a− r), (7.4.28)

where A is a constant, and hence, f̃(k) = Aa
k J1(ak).

Thus, the solution (7.4.27) takes the form

φ(r, z) =−Aa
∞∫

0

1

κ
J1(ak)J0(kr) exp(−κz)dk. (7.4.29)

For an asymptotic evaluation of this integral, it is convenient to express
(7.4.29) in terms ofR which is the distance from the z-axis so thatR2 = r2 + z2

and z=R cos θ. Using the asymptotic result for the Bessel function

J0(kr)∼
(

2

πkr

) 1
2

cos
(
kr − π

4

)
as r→∞, (7.4.30)

where r=R sin θ. Consequently, (7.4.29) combined with u=exp(iωt)φ be-
comes

u∼−Aa
√
2eiωt√

πR sin θ

∞∫

0

1

κ
√
k
J1(ak) cos

(
kR sin θ − π

4

)
exp(−κz)dk.

This integral can be evaluated asymptotically for R→∞ using the stationary
phase approximation formula to obtain the final result

u∼− Aac

ωR sin θ
J1(ak1) exp

[
i

(
ωt− ωR

c

)]
, (7.4.31)
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where k1 = ω/(c sin θ) is the stationary point. Physically, this solution repre-
sents outgoing spherical waves with constant velocity c and decaying ampli-
tude as R→∞.

Example 7.4.5 (Axisymmetric Biharmonic Equation).
We solve the axisymmetric boundary value problem

∇4u(r, z) = 0, 0≤ r <∞, z > 0 , (7.4.32)

with the boundary data

u(r, 0) = f(r), 0≤ r <∞, (7.4.33)

∂u

∂z
= 0 on z=0, 0≤ r <∞, (7.4.34)

u(r, z) → 0 as r→∞, (7.4.35)

where the axisymmetric biharmonic operator is

∇4 =∇2(∇2) =

(
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)(
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)
. (7.4.36)

The use of the Hankel transform H0{u(r, z)}= ũ(k, z) to this problem gives

(
d2

dz2
− k2

)2

ũ(k, z) = 0, z > 0, (7.4.37)

ũ(k, 0)= f̃(k),
dũ

dz
= 0 on z=0. (7.4.38)

The bounded solution of (7.4.37) is

ũ(k, z)= (A+ zB) exp(−kz), (7.4.39)

where A and B are integrating constants to be determined by (7.4.38) as
A= f̃(k) and B= kf̃(k). Thus, solution (7.4.39) becomes

ũ(k, z)= (1 + kz)f̃(k) exp(−kz). (7.4.40)

The inverse Hankel transform gives the formal solution

u(r, z)=

∞∫

0

k(1 + kz)f̃(k)J0(kr) exp(−kz)dk. (7.4.41)

Example 7.4.6 (The Axisymmetric Cauchy-Poisson Water Wave Problem).
We consider the initial value problem for an inviscid water of finite depth h
with a free horizontal surface at z=0, and the z-axis positive upward. We
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assume that the liquid has constant density ρ with no surface tension. The
surface waves are generated in water, which is initially at rest for t< 0 by the
prescribed free surface elevation. In cylindrical polar coordinates (r, θ, z), the
axisymmetric water wave equations for the velocity potential φ(r, z, t) and the
free surface elevation η(r, t) are

∇2φ=φrr +
1

r
φr + φzz =0, 0≤ r <∞, −h≤ z≤ 0, t > 0, (7.4.42)

φz − ηt=0

φt + gη=0

⎫⎬
⎭ on z=0, t > 0, (7.4.43ab)

φz =0 on z=−h, t> 0. (7.4.44)

The initial conditions are

φ(r, 0, 0)= 0 and η(r, 0)= η0(r), for 0≤ r <∞, (7.4.45)

where g is the acceleration due to gravity and η0(r) is the given free surface
elevation.

We apply the joint Laplace and the zero-order Hankel transform defined by

φ̃(k, z, s)=

∞∫

0

e−stdt

∞∫

0

rJ0(kr)φ(r, z, t)dr, (7.4.46)

to (7.4.42)–(7.4.44) so that these equations reduce to

(
d2

dz2
− k2

)
φ̃=0,

dφ̃

dz
− s η̃=−η̃0(k)

s φ̃+ g η̃=0

⎫⎪⎪⎬
⎪⎪⎭

on z=0,

φ̃z =0 on z=−h,
where η̃0(k) is the Hankel transform of η0(r) of order zero.

The solutions of this system are

φ̃(k, z, s) = − g η̃0(k)

(s2 + ω2)

coshk(z + h)

coshkh
, (7.4.47)

η̃(k, s) =
s η̃0(k)

(s2 + ω2)
, (7.4.48)

where
ω2 = gk tanh(kh), (7.4.49)
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is the famous dispersion relation between frequency ω and wavenumber k for
water waves in a liquid of depth h. Physically, this dispersion relation describes
the interaction between the inertial and gravitational forces.

Application of the inverse transforms gives the integral solutions

φ(r, z, t) = −g
∞∫

0

kJ0(kr)η̃0(k)

(
sinωt

ω

)
coshk(z + h)

coshkh
dk, (7.4.50)

η(r, t) =

∞∫

0

kJ0(kr)η̃0(k) cosωt dk. (7.4.51)

These wave integrals represent exact solutions for φ and η at any r and t, but
the physical features of the wave motions cannot be described by them. In
general, the exact evaluation of the integrals is almost a formidable task. In
order to resolve this difficulty, it is necessary and useful to resort to asymptotic
methods. It will be sufficient for the determination of the basic features of the
wave motions to evaluate (7.4.50) or (7.4.51) asymptotically for a large time
and distance with (r/t) held fixed. We now replace J0(kr) by its asymptotic
formula (7.4.30) for kr→∞, so that (7.4.51) gives

η(r, t) ∼
(

2

πr

) 1
2

∞∫

0

√
k η̃0(k) cos

(
kr− π

4

)
cosωt dk

= (2πr)−
1
2 Re

∞∫

0

√
k η̃0(k) exp

[
i
(
ωt− kr +

π

4

)]
dk. (7.4.52)

Application of the stationary phase method to (7.4.52) yields the solution

η(r, t)∼
[

k1
rt|ω′′(k1)|

] 1
2

η̃0(k1) cos[t ω(k1)− k1r], (7.4.53)

where the stationary point k1 =
(
gt2/4r2

)
is the root of the equation

ω′(k) =
r

t
. (7.4.54)

For sufficiently deep water, kh→∞, the dispersion relation becomes

ω2 = gk. (7.4.55)

The solution of the axisymmetric Cauchy-Poisson problem is based on a pre-
scribed initial displacement of unit volume that is concentrated at the origin,

which means that η0(r) = (a/2πr)δ(r) so that η̃0(k) =
a

2π
. Thus, the asymp-

totic solution is obtained from (7.4.53) in the form

η(r, t)∼ agt2

4π
√
2 r3

cos

(
gt2

4r

)
, gt2>> 4r. (7.4.56)
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It is noted that solution (7.4.53) is no longer valid when ω′′(k1) = 0. This
case can be handled by a modification of the asymptotic evaluation (see Deb-
nath, 1994, p. 91).

A wide variety of other physical problems solved by the Hankel transform,
and/or by the joint Hankel and Laplace transform are given in books by
Sneddon (1951, 1972) and by Debnath (1994), and in research papers by
Debnath (1969, 1983, 1989), Mohanti (1979), and Debnath and Rollins (1992)
listed in the Bibliography.

7.5 Exercises

1. Show that

(a) H0{(a2 − r2)H(a− r)}= 4a

κ3
J1(κa)− 2a2

κ2
J0(aκ),

(b) Hn{rne−ar}= a√
π
· 2n+1Γ

(
n+

3

2

)
κn(a2 + κ2)−(n+

3
2 ),

(c) Hn

{
2n

r
f(r)

}
= kHn−1 {f(r)}+ kHn+1 {f(r)}.

2. (a) Show that the solution of the boundary value problem

urr +
1

r
ur + uzz =0, 0<r <∞, 0< z <∞,

u(r, z)=
1√

a2 + r2
on z= 0, 0< r<∞,

is

u(r, z) =

∞∫

0

e−κ(z+a)J0(κr)dκ=
1√

(z + a)2 + r2
.

(b) Obtain the solution of the equation in 2(a) with u(r, 0)= f(r) =
H(a− r), 0< r<∞.

3. (a) The axisymmetric initial value problem is governed by

ut = κ

(
urr +

1

r
ur

)
+ δ(t)f(r), 0<r <∞, t > 0,

u(r, 0) = 0 for 0< r<∞.

Show that the formal solution of this problem is

u(r, t) =

∞∫

0

kJ0(kr)f̃ (k) exp(−k2κt)dk.
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(b) For the special case when f(r) =

(
Q

πa2

)
H(a− r), show that the

solution is

u(r, t)=

(
Q

πa

) ∞∫

0

J0(kr)J1(ak) exp(−k2κt)dk.

4. If f(r) =A(a2 + r2)−
1
2 where A is a constant, show that the solution of

the biharmonic equation described in Example 7.4.5 is

u(r, z) =A
{r2 + (z + a)(2z + a)}

[r2 + (z + a)2]3/2
.

5. Show that the solution of the boundary value problem

urr +
1

r
ur + uzz =0, 0≤ r <∞, z > 0,

u(r, 0)= u0 for 0≤ r≤ a, u0 is a constant,

u(r, z)→ 0 as z→∞,

is

u(r, z) = a u0

∞∫

0

J1(ak)J0(kr) exp(−kz)dk.

Find the solution of the problem when u0 is replaced by an arbitrary
function f(r), and a by infinity.

6. Solve the axisymmetric biharmonic equation for the small-amplitude
free vibration of a thin elastic disk

b2
(
∂2

∂r2
+

1

r

∂

∂r

)2

u+ utt=0, 0< r<∞, t > 0,

u(r, 0)= f(r), ut(r, 0)= 0 for 0<r<∞,

where b2 =

(
D

2σh

)
is the ratio of the flexural rigidity of the disk and its

mass 2hσ per unit area.

7. Show that the zero-order Hankel transform solution of the axisymmetric
Laplace equation

urr +
1

r
ur + uzz =0, 0< r<∞, −∞<z <∞,

with the boundary data

lim
r→0

(r2u)= 0, lim
t→0

(2πr)ur =−f(z), −∞< z <∞,
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is

ũ(k, z)=
1

4πk

∞∫

−∞
exp{−k|z − ζ|}f(ζ)dζ.

Hence, show that

u(r, z)=
1

4π

∞∫

−∞

{
r2 + (z − ζ)2

}− 1
2 f(ζ)dζ.

8. Solve the nonhomogeneous diffusion problem

ut= κ

(
urr +

1

r
ur

)
+Q(r, t), 0<r <∞, t > 0,

u(r, 0)= f(r) for 0<r<∞,

where κ is a constant.

9. Solve the problem of the electrified unit disk in the x−y plane with
center at the origin. The electric potential u(r, z) is axisymmetric and
satisfies the boundary value problem

urr +
1

r
ur + uzz =0, 0<r<∞, 0<z <∞,

u(r, 0)= u0, 0≤ r < a,

∂u

∂z
=0, on z=0 for a< r <∞,

u(r, z)→ 0 as z→∞ for all r,

where u0 is constant. Show that the solution is

u(r, z)=

(
2au0
π

) ∞∫

0

J0(kr)

(
sinak

k

)
e−kzdk.

10. Solve the axisymmetric surface wave problem in deep water due to an
oscillatory surface pressure. The governing equations are

∇2φ= φrr +
1

r
φr + φzz =0, 0≤ r <∞, −∞<z≤ 0,

φt + gη=−P
ρ
p(r) exp(iωt)

φz − ηt=0

⎫⎬
⎭ on z=0, t > 0,

φ(r, z, 0)= 0= η(r, 0), for 0≤ r <∞, −∞<z≤ 0.
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11. Solve the Neumann problem for the Laplace equation

urr +
1

r
ur + uzz =0, 0<r <∞, 0< z <∞

uz(r, 0)=− 1

πa2
H(a− r), 0< r<∞

u(r, z)→ 0 as z→∞ for 0<r <∞.

Show that

lim
a→0

u(r, z)=
1

2π
(r2 + z2)−

1
2 .

12. Solve the Cauchy problem for the wave equation in a dissipating medium

utt + 2κut= c2
(
urr +

1

r
ur

)
, 0<r <∞, t > 0,

u(r, 0)= f(r), ut(r, 0)= g(r) for 0<r<∞,

where κ is a constant.

13. Use the joint Laplace and Hankel transform to solve the initial-boundary
value problem

c2
(
urr +

1

r
ur + uzz

)
= utt, 0<r<∞, 0<z <∞, t > 0,

uz(r, 0, t) =H(a− r)H(t), 0< r<∞, t > 0,

u(r, z, t)→ 0 as r→∞ and u(r, z, t)→ 0 as z→∞,

u(r, z, 0)= 0= ut(r, z, 0),

and show that

ut(r, z, t) =−acH
(
t− z

c

) ∞∫

0

J1(ak) J0

{
ck

√
t2 − z2

c2

}
J0(kr)dk.

14. Find the steady temperature u(r, z) in a beam 0≤ r <∞, 0≤ z≤ a when
the face z=0 is kept at temperature u(r, 0)= 0, and the face z= a is
insulated except that heat is supplied through a circular hole such that

uz(r, a) =H(b− r).

The temperature u(r, z) satisfies the axisymmetric equation

urr +
1

r
ur + uzz =0, 0≤ r <∞, 0≤ z≤ a.
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15. Find the integral solution of the initial-boundary value problem

urr +
1

r
ur + uzz = ut, 0≤ r <∞, 0≤ z <∞, t > 0,

u(r, z, 0)= 0 for all r and z,

(
∂u

∂r

)
r=0

=0, for 0≤ z <∞, t > 0,

(
∂u

∂z

)
z=0

=−H(a− r)√
a2 + r2

, for 0< r<∞, 0< t<∞,

u(r, z, t)→ 0 as r→∞ or z→∞.

16. Heat is supplied at a constant rate Q per unit area per unit time over
a circular area of radius a in the plane z=0 to an infinite solid of
thermal conductivityK, the rest of the plane is kept at zero temperature.
Solve for the steady temperature field u(r, z) that satisfies the Laplace
equation

urr +
1

r
ur + uzz =0, 0< r<∞, −∞<z <∞,

with the boundary conditions

u→ 0 as r→∞, u→ 0 as |z|→∞,

−Kuz=
(

2Q

π a2

)
H(a− r) when z=0.

17. The velocity potential φ(r, z) for the flow of an inviscid fluid through
a circular aperture of unit radius in a plane rigid screen satisfies the
Laplace equation

φrr +
1

r
φr + φzz =0, 0<r <∞

with the boundary conditions

φ=1 for 0< r< 1

φz =0 for r > 1

}
on z=0.

Obtain the solution of this boundary value problem.

18. Solve the Cauchy-Poisson wave problem (Debnath, 1989) for a viscous
liquid of finite or infinite depth governed by the equations, free surface,
boundary, and initial conditions

φrr +
1

r
φr + φzz =0,

ψt= ν

(
ψrr +

1

r
ψr − 1

r2
ψ + ψzz

)
,
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where φ(r, z, t) and ψ(r, z, t) represent the potential and stream func-
tions, respectively, 0≤ r <∞, −h≤ z≤ 0 (or −∞<z≤ 0) and t > 0.

The free surface conditions are

ηt −w=0

μ(uz +wr) = 0

φt + gη + 2ν wz =0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

on z=0, t > 0

where η= η(r, t) is the free surface elevation, u=φr + ψz and w=φz −
ψ

r
− ψr are the radial and vertical velocity components of liquid par-

ticles, μ= ρν is the dynamic viscosity, ρ is the density, and ν is the
kinematic viscosity of the liquid.

The boundary conditions at the rigid bottom are

u=φr + ψz =0

w= φz − 1

r
(rψ)r =0

⎫⎪⎬
⎪⎭ on z=−h.

The initial conditions are

η= a
δ(r)

r
, φ=ψ=0 at t=0,

where a is a constant and δ(r) is the Dirac delta function.

If the liquid is of infinite depth, the bottom boundary conditions are

(φ, ψ)→ (0, 0) as z→−∞.

19. Use the joint Hankel and Laplace transform method to solve the initial-
boundary value problem

urr +
1

r
ur − utt − 2ε ut= a

δ(r)

r
δ(t), 0<r <∞, t > 0,

u(r, t)→ 0 as r→∞,

u(0, t) is finite for t> 0,

u(r, 0)= 0= ut(r, 0) for 0<r <∞.

20. Surface waves are generated in an inviscid liquid of infinite depth due
to an explosion (Sen, 1963) above it, which generates the pressure field
p(r, t). The velocity potential u= φ(r, z, t) satisfies the Laplace equation

urr +
1

r
ur + uzz =0, 0< r<∞, t > 0,
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and the free surface condition

utt + g uz =
1

ρ

(
∂p

∂t

)
[H(r)−H{r, r0(t)}] on z=0,

where ρ is the constant density of the liquid, r0(t) is the extent of the
blast, and the liquid is initially at rest.

Solve this problem.

21. The electrostatic potential u(r, z) generated in the space between two
horizontal disks at z=± a by a point charge q at r= z=0 is described
by a singular function at r= z=0 is

u(r, z)=φ(r, z) + q(r2 + z2)−
1
2 ,

where φ(r, z) satisfies the Laplace equation

φrr +
1

r
φr + φzz =0, 0<r <∞

with the boundary conditions

φ(r, z) =−q(r2 + z2)−
1
2 at z=± a.

Obtain the solution for φ(r, z) and then u(r, z).

22. Show that

(a) Hn

[
e−arf(r)

]
=L {rf(r)Jn(κr)} ,

(b) H0

[
e−ar

2

J0(br)
]
=
a

2
exp

(
κ2 − b2

4a

)
I0

(
bκ

2a

)
,

(c) Hn

[
rn−1e−ar

]
=

(2κ)n(n− 1
2 )!√

π(κ2 + a2)n+
1
2

,

(d) Hn

[
f(r)

r

]
=
( κ

2n

) [
f̃n−1(κ) + f̃n+1(κ)

]
,

(e) Hn

[
rn−1 d

dr

{
r1−nf(r)

}]
=−κf̃n−1(κ),

(f) Hn

[
r−(n+1) d

dr

{
rn+1f(r)

}]
= κf̃n+1(κ).

23. Show that

(a) H0

[
e−

r2

2

]
= e−

κ2

2 (Self-reciprocal).

(b) H0 [δ(r − a)] = a J0(aκ).
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(c) H0

[
1

r

]
=

1

κ
.

24. Using the Parseval relation (7.3.2), show that

I(a, b) =

∫ ∞

0

1

κ
Jn+1(aκ)Jn+1(bκ) dκ=

1

2(n+ 1)

(a
b

)n+1

,

0<a< b, n+
1

2
> 0.

25. (a) Solve the axisymmetric Dirichlet problem in a half space described
by Laplace equation

urr +
1

r
ur + uzz =0, 0<r <∞, z > 0,

u(r, 0)= f(r), 0<r <∞,

u(r, z)→ 0 as r→∞, z→∞.

(b) Find the solution of (a) when f(r) =H(c− r).

(c) Find the solution of (a) when f(r) =
1√

r2 + a2
, a > 0.

26. Solve the axisymmetric small-amplitude vibration of a thin elastic plate
governed by the equation

a2
(
∂2

∂r2
+

∂

r ∂r

)2

u(r, t) +
∂2u

∂t2
=0, 0<r <∞, t > 0

with the initial conditions

u(r, 0)= f(r), ut(r, 0)= 0, 0<r <∞,

where a= D
2ρh , D is the flexural rigidity, ρ is the density, and 2h is

the thickness of the plate.

27. Solve the forced vibration problem of an elastic membrane described by
the non-homogeneous boundary value problem

urr +
1

r
ur − 1

c2
utt=− 1

T
p(r, t), 0<r <∞, t > 0,

u(r, 0)= f(r), ut(r, 0)= g(r), 0< r<∞,

u(r, t)is bounded at ∞ (r→∞),

where T is the tension of the membrane and c2 = T
ρ .
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Mellin Transforms and Their Applications

“One cannot understand ... the universality of laws of nature, the
relationship of things, without an understanding of mathematics.
There is no other way to do it.”

Richard P. Feynman

“The research worker, in his efforts to express the fundamental laws
of Nature in mathematical form, should strive mainly for mathe-
matical beauty. He should take simplicity into consideration in a
subordinate way to beauty. ... It often happens that the require-
ments of simplicity and beauty are the same, but where they clash
the latter must take precedence.”

Paul Dirac

8.1 Introduction

This chapter deals with the theory and applications of the Mellin transform.
We derive the Mellin transform and its inverse from the complex Fourier trans-
form. This is followed by several examples and the basic operational properties
of Mellin transforms. We discuss several applications of Mellin transforms to
boundary value problems and to summation of infinite series. The Weyl trans-
form and the Weyl fractional derivatives with examples are also included.

Historically, Riemann (1876) first recognized the Mellin transform in his fa-
mous memoir on prime numbers. Its explicit formulation was given by Cahen
(1894). Almost simultaneously, Mellin (1896, 1902) gave an elaborate discus-
sion of the Mellin transform and its inversion formula.

367
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8.2 Definition of the Mellin Transform and Examples

We derive the Mellin transform and its inverse from the complex Fourier
transform and its inverse, which are defined respectively by

F {g(ξ)}=G(k) =
1√
2π

∞∫

−∞
e−ikξg(ξ)dξ, (8.2.1)

F −1{G(k)}= g(ξ) =
1√
2π

∞∫

−∞
eikξG(k)dk. (8.2.2)

Making the changes of variables exp(ξ) = x and ik= c− p, where c is a
constant, in results (8.2.1) and (8.2.2) we obtain

G(ip− ic) =
1√
2π

∞∫

0

xp−c−1g(log x)dx, (8.2.3)

g(log x) =
1√
2π

c+i∞∫

c−i∞
xc−pG(ip− ic)dp. (8.2.4)

We now write
1√
2π

x−cg(log x)≡ f(x) and G(ip− ic)≡ f̃(p) to define the

Mellin transform of f(x) and the inverse Mellin transform as

M {f(x)}= f̃(p) =

∞∫

0

xp−1f(x)dx, (8.2.5)

M −1{f̃(p)}= f(x) =
1

2πi

c+i∞∫

c−i∞
x−pf̃(p)dp, (8.2.6)

where f(x) is a real valued function defined on (0,∞) and the Mellin transform
variable p is a complex number. Sometimes, the Mellin transform of f(x) is
denoted explicitly by f̃(p) =M [f(x), p]. Obviously, M and M −1 are linear
integral operators.

Example 8.2.1 (a) If f(x) = e−nx, where n> 0, then

M {e−nx}= f̃(p) =

∞∫

0

xp−1e−nxdx,
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which is, by putting nx= t,

=
1

np

∞∫

0

tp−1e−tdt=
Γ(p)

np
. (8.2.7)

(b) If f(x) =
1

1 + x
, then

M

{
1

1 + x

}
= f̃(p) =

∞∫

0

xp−1 · dx

1 + x
,

which is, by substituting x=
t

1− t
or t=

x

1 + x
,

=

1∫

0

tp−1(1− t)(1−p)−1dt=B(p, 1− p)= Γ(p)Γ(1− p),

which is, by a well-known result for the gamma function,

= π cosec(pπ), 0<Re(p)< 1. (8.2.8)

(c) If f(x) = (ex − 1)−1, then

M

{
1

ex − 1

}
= f̃(p) =

∞∫

0

xp−1 1

ex − 1
dx,

which is, by using

∞∑
n=0

e−nx=
1

1− e−x
and hence,

∞∑
n=1

e−nx =
1

ex − 1
,

=
∞∑
n=1

∞∫

0

xp−1e−nxdx=
∞∑
n=1

Γ(p)

np
=Γ(p)ζ(p), (8.2.9)

where ζ(p) =

∞∑
n=1

1

np
, (Re p> 1) is the famous Riemann zeta function.

(d) If f(x) =
2

e2x − 1
, then

M

{
2

e2x − 1

}
= f̃(p) = 2

∞∫

0

xp−1 dx

e2x − 1
= 2

∞∑
n=1

∞∫

0

xp−1e−2nxdx

= 2

∞∑
n=1

Γ(p)

(2n)p
=21−p Γ(p)

∞∑
n=1

1

np
=21−p Γ(p)ζ(p). (8.2.10)
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(e) If f(x) =
1

ex + 1
, then

M

{
1

ex + 1

}
=(1− 21−p)Γ(p) ζ(p). (8.2.11)

This follows from the result[
1

ex − 1
− 1

ex + 1

]
=

2

e2x − 1

combined with (8.2.9) and (8.2.10).

(f) If f(x) =
1

(1 + x)n
, then

M

{
1

(1 + x)n

}
=

∞∫

0

xp−1(1 + x)−ndx,

which is, by putting x=
t

1− t
or t=

x

1 + x
,

=

1∫

0

tp−1(1− t)n−p−1dt

= B(p, n− p) =
Γ(p)Γ(n− p)

Γ(n)
, (8.2.12)

where B(p, q) is the standard beta function.
Hence,

M −1{Γ(p)Γ(n− p)}= Γ(n)

(1 + x)n
.

(g) Find the Mellin transform of cos kx and sin kx.
It follows from Example 8.2.1(a) that

M [e−ikx] =
Γ(p)

(ik)p
=

Γ(p)

kp

(
cos

pπ

2
− i sin

pπ

2

)
.

Separating real and imaginary parts, we find

M [cos kx] = k−p Γ(p) cos
(πp

2

)
, (8.2.13)

M [sin kx] = k−p Γ(p) sin
(πp

2

)
. (8.2.14)

These results can be used to calculate the Fourier cosine and Fourier sine
transforms of xp−1. Result (8.2.13) can be written as

∞∫

0

xp−1 cos kx dx=
Γ(p)

kp
cos

(πp
2

)
.
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Or, equivalently,

Fc

{√
π

2
xp−1

}
=

Γ(p)

kp
cos

(πp
2

)
.

Or,

Fc {xp−1}=
√

2

π

Γ(p)

kp
cos

(πp
2

)
. (8.2.15)

Similarly,

Fs {xp−1}=
√

2

π

Γ(p)

kp
sin

(πp
2

)
. (8.2.16)

8.3 Basic Operational Properties of Mellin Transforms

If M {f(x)}= f̃(p), then the following operational properties hold:

(a) (Scaling Property).

M {f(ax)}= a−pf̃(p), a> 0. (8.3.1)

PROOF By definition, we have,

M {f(ax)}=
∞∫

0

xp−1f(ax)dx,

which is, by substituting ax= t,

=
1

ap

∞∫

0

tp−1f(t)dt=
f̃(p)

ap
.

(b) (Shifting Property).

M [xa f(x)] = f̃(p+ a). (8.3.2)

Its proof follows from the definition.

(c) M {f(xa)}= 1

a
f̃
(p
a

)
, (8.3.3)
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M

{
1

x
f

(
1

x

)}
= f̃(1− p), (8.3.4)

M {(log x)n f(x)}= dn

dpn
f̃(p), n=1, 2, 3, . . . . (8.3.5)

The proofs of (8.3.3) and (8.3.4) are easy and hence, left to the reader.
Result (8.3.5) can easily be proved by using the result

d

dp
xp−1 = (log x)xp−1. (8.3.6)

(d) (Mellin Transforms of Derivatives).

M [f ′(x)] =−(p− 1)f̃(p− 1), (8.3.7)

provided [xp−1f(x)] vanishes as x→ 0 and as x→∞.

M [f ′′(x)] = (p− 1)(p− 2)f̃(p− 2). (8.3.8)

More generally,

M [f (n)(x)] = (−1)n
Γ(p)

Γ(p− n)
f̃(p− n)

= (−1)n
Γ(p)

Γ(p− n)
M [f(x), p− n], (8.3.9)

provided xp−r−1f (r)(x) = 0 as x→ 0 for r=0, 1, 2, . . . , (n− 1).

PROOF We have, by definition,

M [f ′(x)] =

∞∫

0

xp−1f ′(x) dx,

which is, integrating by parts,

= [xp−1f(x)]∞0 − (p− 1)

∞∫

0

xp−2f(x) dx

= −(p− 1)f̃(p− 1).

The proofs of (8.3.8) and (8.3.9) are similar and left to the reader.

(e) If M {f(x)}= f̃(p), then

M {xf ′(x)}=−pf̃(p), (8.3.10)
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provided xpf(x) vanishes at x=0 and as x→∞.

M {x2f ′′(x)}= (−1)2p(p+ 1)f̃(p). (8.3.11)

More generally,

M {xnf (n)(x)}=(−1)n
Γ(p+ n)

Γ(p)
f̃(p). (8.3.12)

PROOF We have, by definition,

M {xf ′(x)}=
∞∫

0

xpf ′(x)dx,

which is, integrating by parts,

= [xpf(x)]∞0 − p

∞∫

0

xp−1f(x)dx=−pf̃(p).

Similar arguments can be used to prove results (8.3.11) and (8.3.12).

(f) (Mellin Transforms of Differential Operators).
If M {f(x)}= f̃(p), then

M

[(
x
d

dx

)2

f(x)

]
=M [x2f ′′(x) + xf ′(x)] = (−1)2 p2f̃(p), (8.3.13)

and more generally,

M

[(
x
d

dx

)n
f(x)

]
=(−1)npnf̃(p). (8.3.14)

PROOF We have, by definition,

M

[(
x
d

dx

)2

f(x)

]
= M [x2f ′′(x) + x f ′(x)]

= M [x2f ′′(x)] + M [x f ′(x)]
= −pf̃(p) + p(p+ 1)f̃(p) by (8.3.10) and (8.3.11)

= (−1)2 p2 f̃(p).
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Similar arguments can be used to prove the general result (8.3.14).

(g) (Mellin Transforms of Integrals).

M

⎧⎨
⎩

x∫

0

f(t)dt

⎫⎬
⎭=−1

p
f̃(p+ 1). (8.3.15)

In general,

M {In f(x)}=M

⎧⎨
⎩

x∫

0

In−1f(t)dt

⎫⎬
⎭= (−1)n

Γ(p)

Γ(p+ n)
f̃(p+ n), (8.3.16)

where In f(x) is the nth repeated integral of f(x) defined by

Inf(x) =

x∫

0

In−1f(t)dt. (8.3.17)

PROOF We write

F (x) =

x∫

0

f(t)dt

so that F ′(x) = f(x) with F (0)= 0. Application of (8.3.7) with F (x) as defined
gives

M {f(x) =F ′(x), p}=−(p− 1)M

⎧⎨
⎩

x∫

0

f(t)dt, p− 1

⎫⎬
⎭ ,

which is, replacing p by p+ 1,

M

⎧⎨
⎩

x∫

0

f(t) dt, p

⎫⎬
⎭=−1

p
M {f(x), p+ 1}=−1

p
f̃(p+ 1).

An argument similar to this can be used to prove (8.3.16).

(h) (Convolution Type Theorems).
If M {f(x)}= f̃(p) and M {g(x)}= g̃(p), then

M [f(x) ∗ g(x)] =M

⎡
⎣

∞∫

0

f(ξ) g

(
x

ξ

)
dξ

ξ

⎤
⎦= f̃(p)g̃(p), (8.3.18)

M [f(x) ◦ g(x)] =M

⎡
⎣

∞∫

0

f(xξ) g(ξ)dξ

⎤
⎦= f̃(p)g̃(1− p). (8.3.19)
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PROOF We have, by definition,

M [f(x) ∗ g(x)] = M

⎡
⎣

∞∫

0

f(ξ) g

(
x

ξ

)
dξ

ξ

⎤
⎦

=

∞∫

0

xp−1dx

∞∫

0

f(ξ) g

(
x

ξ

)
dξ

ξ

=

∞∫

0

f(ξ)
dξ

ξ

∞∫

0

xp−1g

(
x

ξ

)
dx,

(
x

ξ
= η

)
,

=

∞∫

0

f(ξ)
dξ

ξ

∞∫

0

(ξη)p−1g(η) ξ dη

=

∞∫

0

ξp−1f(ξ)dξ

∞∫

0

ηp−1g(η)dη= f̃(p)g̃(p).

Similarly, we have

M [f(x) ◦ g(x)] = M

⎡
⎣

∞∫

0

f(xξ) g(ξ)dξ

⎤
⎦

=

∞∫

0

xp−1dx

∞∫

0

f(xξ) g(ξ)dξ, (xξ= η),

=

∞∫

0

g(ξ)dξ

∞∫

0

ηp−1ξ1−pf(η)
dη

ξ

=

∞∫

0

ξ1−p−1g(ξ)dξ

∞∫

0

ηp−1f(η)dη= g̃(1− p)f̃(p).

Note that, in this case, the operation ◦ is not commutative.
Clearly, putting x= s,

M −1{f̃(1− p)g̃(p)}=
∞∫

0

g(st)f(t)dt.

Putting g(t) = e−t and g̃(p) =Γ(p), we obtain the Laplace transform of f(t)

M −1 {f̃(1− p)Γ(p)}=
∞∫

0

e−stf(t)dt=L {f(t)}= f̄(s). (8.3.20)
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(i) (Parseval’s Type Property).
If M {f(x)}= f̃(p) and M {g(x)}= g̃(p), then

M [f(x)g(x)] =
1

2πi

c+i∞∫

c−i∞
f̃(s)g̃(p− s)ds. (8.3.21)

Or, equivalently,

∞∫

0

xp−1f(x)g(x)dx=
1

2πi

c+i∞∫

c−i∞
f̃(s)g̃(p− s)ds. (8.3.22)

In particular, when p=1, we obtain the Parseval formula for the Mellin trans-
form,

∞∫

0

f(x)g(x)dx=
1

2πi

c+i∞∫

c−i∞
f̃(s)g̃(1− s)ds. (8.3.23)

PROOF By definition, we have

M [f(x)g(x)] =

∞∫

0

xp−1f(x)g(x)dx

=
1

2πi

∞∫

0

xp−1g(x)dx

c+i∞∫

c−i∞
x−sf̃(s)ds

=
1

2πi

c+i∞∫

c−i∞
f̃(s)ds

∞∫

0

xp−s−1g(x)dx

=
1

2πi

c+i∞∫

c−i∞
f̃(s)g̃(p− s)ds.

When p=1, the above result becomes (8.3.23).
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8.4 Applications of Mellin Transforms

Example 8.4.1 Obtain the solution of the boundary value problem

x2uxx + xux + uyy =0, 0≤ x<∞, 0<y < 1 (8.4.1)

u(x, 0)= 0, u(x, 1)=

⎧⎨
⎩
A, 0≤ x≤ 1

0, x > 1

⎫⎬
⎭ , (8.4.2)

where A is a constant.

We apply the Mellin transform of u(x, y) with respect to x defined by

ũ(p, y) =

∞∫

0

xp−1u(x, y) dx

to reduce the given system into the form

ũyy + p2ũ=0, 0<y < 1

ũ(p, 0)= 0, ũ(p, 1)=A

1∫

0

xp−1dx=
A

p
.

The solution of the transformed problem is

ũ(p, y) =
A

p

sin py

sin p
, 0< Re p< 1.

The inverse Mellin transform gives

u(x, y) =
A

2πi

c+i∞∫

c−i∞

x−p

p

sin py

sin p
dp, (8.4.3)

where ũ(p, y) is analytic in the vertical strip 0<Re (p) = c <π. The integrand
of (8.4.3) has simple poles at p=nπ, n=1, 2, 3, . . . which lie inside a semi-
circular contour in the right half plane. Evaluating (8.4.3) by theory of residues
gives the solution for x> 1 as

u(x, y) =
A

π

∞∑
n=1

1

n
(−1)n x−nπ sin nπy. (8.4.4)
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Example 8.4.2 (Potential in an Infinite Wedge).
Find the potential φ(r, θ) that satisfies the Laplace equation

r2φrr + rφr + φθθ =0 (8.4.5)

in an infinite wedge 0<r <∞, −α< θ <α as shown in Figure 8.1 with the
boundary conditions

φ(r, α) = f(r), φ(r, −α) = g(r) 0≤ r <∞, (8.4.6ab)

φ(r, θ)→ 0 as r→∞ for all θ in − α< θ <α. (8.4.7)

0 x

y

-

=

= -

Figure 8.1 An infinite wedge.

We apply the Mellin transform of the potential φ(r, θ) defined by

M [φ(r, θ)] = φ̃(p, θ) =

∞∫

0

rp−1φ(r, θ) dr

to the differential system (8.4.5)–(8.4.7) to obtain

d2φ̃

dθ2
+ p2φ̃=0, (8.4.8)

φ̃(p, α) = f̃(p), φ̃(p, −α) = g̃(p). (8.4.9ab)

The general solution of the transformed equation is

φ̃(p, θ) =A cos pθ+B sin pθ, (8.4.10)
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where A and B are functions of p and α. The boundary conditions (8.4.9ab)
determine A and B, which satisfy

A cos pα+B sin pα = f̃(p),

A cos pα−B sin pα = g̃(p).

These give A=
f̃(p) + g̃(p)

2 cospα
, B =

f̃(p)− g̃(p)

2 sin pα
.

Thus, solution (8.4.10) becomes

φ̃(p, θ) = f̃(p).
sin p(α+ θ)

sin(2 pα)
+ g̃(p)

sin p(α− θ)

sin(2 pα)

= f̃(p)h̃(p, α+ θ) + g̃(p)h̃(p, α− θ), (8.4.11)

where

h̃(p, θ) =
sin pθ

sin(2 pα)
.

Or, equivalently,

h(r, θ) =M −1

{
sin pθ

sin 2 pα

}
=

(
1

2α

)
rn sinnθ

(1 + 2 rn cosnθ+ r2n)
, (8.4.12)

where
n=

π

2α
or, 2α=

π

n
.

Application of the inverse Mellin transform to (8.4.11) gives

φ(r, θ) =M −1
{
f̃(p)h̃(p, α+ θ)

}
+M −1

{
g̃(p)h̃(p, α− θ)

}
,

which is, by the convolution property (8.3.18),

φ(r, θ) =
rn cosnθ

2α

⎡
⎣

∞∫

0

ξn−1f(ξ)dξ

ξ2n − 2(rξ)n sinnθ+ r2n

+

∞∫

0

ξn−1g(ξ)dξ

ξ2n + 2(rξ)n sinnθ+ r2n

⎤
⎦ , |α|< π

2n
. (8.4.13)

This is the formal solution of the problem.

In particular, when f(r) = g(r), solution (8.4.11) becomes

φ̃(p, θ) = f̃(p)
cos pθ

cos pα
= f̃(p)h̃(p, θ), (8.4.14)

where

h̃(p, θ) =
cos pθ

cos pα
=M {h(r, θ)}.
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Application of the inverse Mellin transform to (8.4.14) combined with the
convolution property (8.3.18) yields the solution

φ(r, θ) =

∞∫

0

f(ξ)h

(
r

ξ
, θ

)
dξ

ξ
, (8.4.15)

where

h(r, θ) =M −1

{
cos pθ

cos pα

}
=

(
rn

α

)
(1 + r2n) cos(nθ)

(1 + 2r2n cos 2nθ+ r2n)
, (8.4.16)

and n=
π

2α
.

Some applications of the Mellin transform to boundary value problems are
given by Sneddon (1951) and Tranter (1966).

Example 8.4.3 Solve the integral equation
∞∫

0

f(ξ) k(xξ)dξ = g(x), x> 0. (8.4.17)

Application of the Mellin transform with respect to x to equation (8.4.17)
combined with (8.3.19) gives

f̃(1− p)k̃(p) = g̃(p),

which gives, replacing p by 1− p,

f̃(p) = g̃(1− p)h̃(p),

where

h̃(p) =
1

k̃(1− p)
.

The inverse Mellin transform combined with (8.3.19) leads to the solution

f(x) =M −1
{
g̃(1− p)h̃(p)

}
=

∞∫

0

g(ξ)h(xξ)dξ, (8.4.18)

provided h(x) =M −1
{
h̃(p)

}
exists. Thus, the problem is formally solved.

If, in particular, h̃(p) = k̃(p), then the solution of (8.4.18) becomes

f(x) =

∞∫

0

g(ξ) k(xξ)dξ, (8.4.19)



Mellin Transforms and Their Applications 381

provided k̃(p)k̃(1− p) = 1.

Example 8.4.4 Solve the integral equation
∞∫

0

f(ξ) g

(
x

ξ

)
dξ

ξ
= h(x), (8.4.20)

where f(x) is unknown and g(x) and h(x) are given functions.
Applications of the Mellin transform with respect to x gives

f̃(p) = h̃(p)k̃(p), k̃(p) =
1

g̃(p)
.

Inversion, by the convolution property (8.3.18), gives the solution

f(x) =M −1
{
h̃(p)k̃(p)

}
=

∞∫

0

h(ξ) k

(
x

ξ

)
dξ

ξ
. (8.4.21)

8.5 Mellin Transforms of the Weyl Fractional
Integral and the Weyl Fractional Derivative

DEFINITION 8.5.1 The Mellin transform of the Weyl fractional integral
of f(x) is defined by

W−α[f(x)] =
1

Γ(α)

∞∫

x

(t− x)α−1f(t)dt, 0<Reα< 1, x > 0. (8.5.1)

Often xW
−α
∞ is used instead of W−α to indicate the limits to integration.

Result (8.5.1) can be interpreted as the Weyl transform of f(t), defined by

W−α[f(t)] =F (x, α) =
1

Γ(α)

∞∫

x

(t− x)α−1f(t)dt. (8.5.2)

We first give some simple examples of the Weyl transform.
If f(t)= exp(−at), Re a> 0, then the Weyl transform of f(t) is given by

W−α[exp(−at)] = 1

Γ(α)

∞∫

x

(t− x)α−1 exp(−at)dt,
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which is, by the change of variable t− x= y,

=
e−ax

Γ(α)

∞∫

0

yα−1 exp(−ay)dy

which is, by letting ay= t,

W−α[f(t)] =
e−ax

aα
1

Γ(α)

∞∫

0

tα−1e−tdt=
e−ax

aα
. (8.5.3)

Similarly, it can be shown that

W−α[t−μ] =
Γ(μ− α)

Γ(μ)
xα−μ, 0<Reα<Reμ. (8.5.4)

Making reference to Gradshteyn and Ryzhik (2000, p. 424), we obtain

W−α[sin at] = a−α sin
(
ax+

πα

2

)
, (8.5.5)

W−α[cos at] = a−α cos
(
ax+

πα

2

)
, (8.5.6)

where 0<Reα< 1 and a> 0.
It can be shown that, for any two positive numbers α and β, the Weyl

fractional integral satisfies the laws of exponents

W−α[W−βf(x)] =W−(β+α)[f(x)] =W−β [W−αf(x)]. (8.5.7)

Invoking a change of variable t− x= y in (8.5.1), we obtain

W−α[f(x)] =
1

Γ(α)

∞∫

0

yα−1f(x+ y)dy. (8.5.8)

We next differentiate (8.5.8) to obtain, D=
d

dx
,

D[W−αf(x)] =
1

Γ(α)

∞∫

0

tα−1 ∂

∂x
f(x+ t)dt

=
1

Γ(α)

∞∫

0

tα−1Df(x+ t)dt

= W−α[Df(x)]. (8.5.9)

A similar argument leads to a more general result

Dn[W−αf(x)] =W−α[Dnf(x)], (8.5.10)
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where n is a positive integer.
Or, symbolically,

DnW−α=W−αDn. (8.5.11)

We now calculate the Mellin transform of the Weyl fractional integral by

putting h(t) = tαf(t) and g
(x
t

)
= 1

Γ(α)

(
1− x

t

)α−1
H

(
1− x

t

)
, whereH

(
1− x

t

)
is the Heaviside unit step function so that (8.5.1) becomes

F (x, α) =

∞∫

0

h(t) g
(x
t

) dt
t
, (8.5.12)

which is, by the convolution property (8.3.18),

F̃ (p, α) = h̃(p)g̃(p),

where
h̃(p) =M {xαf(x)}= f̃(p+ α),

and

g̃(p) = M

{
1

Γ(α)
(1− x)α−1H(1− x)

}

=
1

Γ(α)

1∫

0

xp−1(1− x)α−1dx=
B(p, α)

Γ(α)
=

Γ(p)

Γ(p+ α)
.

Consequently,

F̃ (p, α) =M [W−αf(x), p] =
Γ(p)

Γ(p+ α)
f̃(p+ α). (8.5.13)

It is important to note that this result is an obvious extension of result 7(b)
in Exercise 8.8

DEFINITION 8.5.2 If β is a positive number and n is the smallest
integer greater than β such that n− β=α> 0, the Weyl fractional derivative
of a function f(x) is defined by

W β [f(x)] = EnW−(n−β)[f(x)]

=
(−1)n

Γ(n− β)

dn

dxn

∞∫

x

(t− x)n−β−1f(t)dt, (8.5.14)

where E =−D.
Or, symbolically,

W β =EnW−α=EnW−(n−β). (8.5.15)
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It can be shown that, for any β,

W−βW β = I =W βW−β. (8.5.16)

And, for any β and γ, the Weyl fractional derivative satisfies the laws of
exponents

W β [W γf(x)] =W β+γ [f(x)] =W γ [W βf(x)]. (8.5.17)

We now calculate the Weyl fractional derivative of some elementary functions.

If f(x) = exp(−ax), a> 0, then the definition (8.5.14) gives

W βe−ax=En[W−(n−β)e−ax]. (8.5.18)

Writing n− β =α> 0 and using (8.5.3) yields

W βe−ax = En[W−αe−ax] =En[a−αe−ax]
= a−α(ane−ax) = aβe−ax. (8.5.19)

Replacing β by −α in (8.5.19) leads to result (8.5.3) as expected.

Similarly, we obtain

W βx−μ =
Γ(β + μ)

Γ(μ)
x−(β+μ). (8.5.20)

It is easy to see that

W β(cos ax) =E[W−(1−β) cos ax],

which is, by (8.5.6),

= aβ cos

(
ax− 1

2
πβ

)
. (8.5.21)

Similarly,

W β(sin ax) = aβ sin

(
ax− 1

2
πβ

)
, (8.5.22)

provided α and β lie between 0 and 1.

If β is replaced by −α, results (8.5.20)–(8.5.22) reduce to (8.5.4)–(8.5.6),
respectively.

Finally, we calculate the Mellin transform of the Weyl fractional derivative
with the help of (8.3.9) and find

M [W βf(x)] = M [EnW−(n−β)f(x)] = (−1)nM [DnW−(n−β)f(x)]

=
Γ(p)

Γ(p− n)
M [W−(n−β)f(x), p− n],
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which is, by result (8.5.13),

=
Γ(p)

Γ(p− n)
· Γ(p− n)

Γ(p− β)
f̃(p− β)

=
Γ(p)

Γ(p− β)
M [f(x), p− β]

=
Γ(p)

Γ(p− β)
f̃(p− β). (8.5.23)

Example 8.5.1 (The Fourier Transform of the Weyl Fractional Integral).

F{W−αf(x)}= exp

(
−πiα

2

)
k−αF{f(x)}. (8.5.24)

We have, by definition,

F{W−αf(x)} =
1√
2π

1

Γ(α)

∞∫

−∞
e−ikxdx

∞∫

x

(t− x)α−1f(t)dt

=
1√
2π

∞∫

−∞
f(t)dt · 1

Γ(α)

t∫

−∞
exp(−ikx)(t− x)α−1dx.

Thus,

F{W−αf(x)} =
1√
2π

∞∫

−∞
e−iktf(t)dt · 1

Γ(α)

∞∫

0

eikτ τα−1dτ, (t− x= τ)

= F{f(x)} 1

Γ(α)
M {eikτ}

= exp

(
−πiα

2

)
k−αF{f(x)}.

In the limit as α→ 0

lim
α→0

F{W−αf(x)}=F{f(x)}.

This implies that
W 0{f(x)}= f(x).

We conclude this section by proving a general property of the Riemann-
Liouville fractional integral operator D−α, and the Weyl fractional integral
operator W−α. It follows from the definition (6.2.1) that D−αf(t) can be
expressed as the convolution

D−αf(x) = gα(t) ∗ f(t), (8.5.25)
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where

gα(t) =
tα−1

Γ(α)
, t > 0.

Similarly, W−αf(x) can also be written in terms of the convolution

W−αf(x) = gα(−x)∗f(x). (8.5.26)

Then, under suitable conditions,

M [D−αf(x)] =
Γ(1− α− p)

Γ(1− p)
f̃(p+ α), (8.5.27)

M [W−αf(x)] =
Γ(p)

Γ(α+ p)
f̃(p+ α). (8.5.28)

Finally, a formal computation gives
∞∫

0

{D−αf(x)}g(x)dx =
1

Γ(α)

∞∫

0

g(x)dx

x∫

0

(x− t)α−1f(t)dt

=

∞∫

0

f(t)dt · 1

Γ(α)

∞∫

t

(x− t)α−1g(x)dx

=

∞∫

0

f(t)[W−αg(t)] dt,

which is, using the inner product notation,

〈D−αf, g〉= 〈f, W−αg〉. (8.5.29)

This show that D−α and W−α behave like adjoint operators. Obviously, this
result can be used to define fractional integrals of distributions. This result is
taken from Debnath and Grum (1988).

8.6 Application of Mellin Transforms to Summation of
Series

In this section we discuss a method of summation of series that is particularly
associated with the work of Macfarlane (1949).

THEOREM 8.6.1 If M {f(x)}= f̃(p), then

∞∑
n=0

f(n+ a) =
1

2πi

c+i∞∫

c−i∞
f̃(p) ξ(p, a)dp, (8.6.1)
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where ξ(p, a) is the Hurwitz zeta function defined by

ξ(p, a) =

∞∑
n=0

1

(n+ a)p
, 0≤ a≤ 1, Re(p)> 1. (8.6.2)

PROOF If follows from the inverse Mellin transform that

f(n+ a) =
1

2πi

c+i∞∫

c−i∞
f̃(p)(n+ a)−p dp. (8.6.3)

Summing this over all n gives

∞∑
n=0

f(n+ a) =
1

2πi

c+i∞∫

c−i∞
f̃(p) ξ(p, a) dp.

This completes the proof.
Similarly, the scaling property (8.3.1) gives

f(nx) =M −1{n−p f̃(p)}= 1

2πi

c+i∞∫

c−i∞
x−p n−pf̃(p)dp.

Thus,

∞∑
n=1

f(nx) =
1

2πi

c+i∞∫

c−i∞
x−pf̃(p) ζ(p)dp=M −1{f̃(p) ζ(p)}, (8.6.4)

where ζ(p) =
∞∑
n=1

n−p is the Riemann zeta function.

When x=1, result (8.6.4) reduces to

∞∑
n=1

f(n)=
1

2πi

c+i∞∫

c−i∞
f̃(p) ζ(p)dp. (8.6.5)

This can be obtained from (8.6.1) when a=0.

Example 8.6.1 Show that
∞∑
n=1

(−1)n−1n−p=(1− 21−p) ζ(p). (8.6.6)
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Using Example 8.2.1(a), we can write the left-hand side of (8.6.6) multiplied
by tn as

∞∑
n=1

(−1)n−1n−ptn =

∞∑
n=1

(−1)n−1tn · 1

Γ(p)

∞∫

0

xp−1e−nxdx

=
1

Γ(p)

∞∫

0

xp−1dx

∞∑
n=1

(−1)n−1tnxe−nx

=
1

Γ(p)

∞∫

0

xp−1 · te−x

1 + te−x
· dx

=
1

Γ(p)

∞∫

0

xp−1 · t

ex + t
dx.

In the limit as t→ 1, the above result gives

∞∑
n=1

(−1)n−1n−p =
1

Γ(p)

∞∫

0

xp−1 1

ex + 1
dx

=
1

Γ(p)
M

{
1

ex + 1

}
= (1− 21−p) ζ(p),

in which result (8.2.11) is used.

Example 8.6.2 Show that
∞∑
n=1

(
sinan

n

)
=

1

2
(π − a), 0<a< 2π. (8.6.7)

The Mellin transform of f(x) =

(
sinax

x

)
gives

M

[
sin ax

x

]
=

∞∫

0

xp−2 sinax dx

= Fs

{√
π

2
xp−2

}

= −Γ(p− 1)

ap−1
cos

(πp
2

)
.

Substituting this result into (8.6.5) gives

∞∑
n=1

(
sin an

n

)
=− 1

2πi

c+i∞∫

c−i∞

Γ(p− 1)

ap−1
ζ(p) cos

(πp
2

)
dp. (8.6.8)
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We next use the well-known functional equation for the zeta function

(2π)p ζ(1− p)= 2Γ(p) ζ(p) cos
(πp

2

)
(8.6.9)

in the integrand of (8.6.8) to obtain

∞∑
n=1

(
sin an

n

)
=−a

2
· 1

2πi

c+i∞∫

c−i∞

(
2π

a

)p
ζ(1− p)

p− 1
dp.

The integral has two simple poles at p=0 and p=1 with residues 1 and −π/a,
respectively, and the complex integral is evaluated by calculating the residues
at these poles. Thus, the sum of the series is

∞∑
n=1

(
sinan

n

)
=

1

2
(π − a).

8.7 Generalized Mellin Transforms

In order to extend the applicability of the classical Mellin transform, Naylor
(1963) generalized the method of Mellin integral transforms. This generalized
Mellin transform is useful for finding solutions of boundary value problems in
regions bounded by the natural coordinate surfaces of a spherical or cylindrical
coordinate system. They can be used to solve boundary value problems in
finite regions or in infinite regions bounded internally.

The generalized Mellin transform of a function f(r) defined in a< r <∞ is
introduced by the integral

M−{f(r)}=F−(p) =

∞∫

a

(
rp−1 − a2p

rp+1

)
f(r) dr. (8.7.1)

The inverse transform is given by

M −1
− {F−(p)}= f(r) =

1

2πi

∫

L

r−p F (p) dp, r > a, (8.7.2)

where L is the line Re p= c, and F (p) is analytic in the strip |Re(p)|= |c|<γ.
By integrating by parts, we can show that

M−

[
r2
∂2f

∂r2
+ r

∂f

∂r

]
= p2 F−(p) + 2 p apf(a), (8.7.3)
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provided f(r) is appropriately behaved at infinity. More precisely,

lim
r→∞

[
(rp − a2p r−p)rfr − p(rp + a2pr−p)f

]
=0. (8.7.4)

Obviously, this generalized transform seems to be very useful for finding the
solution of boundary value problems in which f(r) is prescribed on the internal
boundary at r= a.

On the other hand, if the derivative of f(r) is prescribed at r= a, it is
convenient to define the associated integral transform by

M+[f(r)] =F+(p) =

∞∫

a

(
rp−1 +

a2p

rp+1

)
f(r) dr, |Re(p)|<r, (8.7.5)

and its inverse given by

M −1
+ [f(p)] = f(r) =

1

2πi

∫

L

r−p F+(p)dp, r > a. (8.7.6)

In this case, we can show by integration by parts that

M+

[
r2
∂2f

∂r2
+ r

∂f

∂r

]
= p2F+(p)− 2 ap+1f ′(a), (8.7.7)

where f ′(r) exists at r= a.

THEOREM 8.7.1 (Convolution).

If M+{f(r)}=F+(p), and M+{g(r)}=G+(p), then

M+{f(r) g(r)}= 1

2πi

∫

L

F+(ξ)G+(p− ξ) dξ. (8.7.8)

Or, equivalently,

f(r)g(r) =M −1
+

⎡
⎣ 1

2πi

∫

L

F+(ξ)G+(p− ξ)dξ

⎤
⎦ . (8.7.9)

PROOF We assume that F+(p) and G+(p) are analytic in some strip
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|Re(p)|<γ. Then

M+{f(r) g(r)} =

∞∫

a

(
rp−1 +

a2p

rp+1

)
f(r)g(r)dr

=

∞∫

a

rp−1f(r)g(r)dr +

∞∫

a

a2p

rp+1
f(r)g(r)dr (8.7.10)

=
1

2πi

∫

L

F+(ξ)dξ

∞∫

a

rp−ξ−1g(r)dr

+
1

2π

∞∫

a

a2p

rp+1
g(r)dr

∫

L

r−ξF+(ξ) dξ. (8.7.11)

Replacing ξ by −ξ in the first integral term and using F+(ξ) = a2ξF+(−ξ),
which follows from the definition (8.7.5), we obtain

∫

L

r−ξ F+(ξ)dξ =

∫

L

rξ a−2ξ F+(ξ)dξ. (8.7.12)

The path of integration L, Re(ξ) = c, becomes Re(ξ) =−c, but these paths
can be reconciled if F (ξ) tends to zero for large Im(ξ).

In view of (8.7.11), we have rewritten

∞∫

a

a2p

rp+1
f(r) g(r)dr =

1

2πi

∫

L

F+(ξ)dξ

∞∫

a

a2p−2ξ

rp−ξ+1
g(r) dr. (8.7.13)

This result is used to rewrite (8.7.10) as

M+{f(r)g(r)} =

∞∫

a

(
rp−1 +

a2p

rp+1

)
f(r)g(r)dr

=

∞∫

a

rp−1f(r) g(r) dr +

∞∫

a

a2p

rp+1
f(r) g(r) dr

=
1

2πi

∫

L

F+(ξ) dξ

∞∫

a

rp−ξ−1g(r) dr

+
1

2πi

∫

L

F+(ξ)dξ

∞∫

a

a2p−2ξ

rp−ξ+1
g(r) dr

=
1

2πi

∫

L

F+(ξ)G+(p− ξ) dξ.
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This completes the proof.

If the range of integration is finite, then we define the generalized finite
Mellin transform by

M a
−{f(r)}=F a−(p) =

a∫

0

(
rp−1 − a2p

rp+1

)
f(r)dr, (8.7.14)

where Re p< γ.
The corresponding inverse transform is given by

f(r) =− 1

2πi

∫

L

( r

a2

)p
F a−(p)dp, 0<r <a,

which is, by replacing p by −p and using F a−(−p) =−a−2p F a−(p),

=
1

2πi

∫

L

r−p F a−(p)dp, 0< r<a, (8.7.15)

where the path L is Re p=−c with |c|<γ.
It is easy to verify the result

M a
−{r2frr + rf−r} =

a∫

0

(
rp−1 − a2p

rp+1

)
{r2frr + rfr}dr

= p2 F a−(p)− 2 p ap f(a). (8.7.16)

This is a useful result for applications.
Similarly, we define the generalized finite Mellin transform-pair by

M a
+{f(r)}=F a+(p) =

a∫

0

(
rp−1 +

a2p

rp+1

)
f(r) dr, (8.7.17)

f(r) =
(
M a

+

)−1 [
F a+(p)

]
=

1

2πi

∫

L

r−pF a+(p) dp, (8.7.18)

where |Re p|<γ.
For this finite transform, we can also prove

M a
+

[
r2frr + r fr

]
=

a∫

0

(
rp−1 +

a2p

rp+1

)(
r2frr + r fr

)
dr

= p2F a+(p) + 2 ap−1 f ′(a). (8.7.19)

This result also seems to be useful for applications. The reader is referred
to Naylor (1963) for applications of the above results to boundary value prob-
lems.
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8.8 Exercises

1. Find the Mellin transform of each of the following functions:

(a) f(x) =H(a− x), a> 0,

(c) f(x) = 1
1+x2 ,

(e) f(x) = xzH(x− x0),

(g) f(x) =Ei(x),

(i) f(x) = exp
(−ax2) , a > 0,

(k) f(x) =Ci(x),

(m) f(x) = (1 + x)−1,

(b) f(x) = xme−nx, m,n> 0,

(d) f(x) = J2
0 (x),

(f) f(x) = [H(x− x0)−H(x)]xz ,

(h) f(x) = exEi(x),

(j) f(x) = erfc(x),

(l) f(x) = (1 + xa)
−b

,

where the exponential integral is defined by

Ei(x) =

∞∫

x

t−1 e−t dt=

∞∫

1

ξ−1 e−ξ x dξ.

2. Derive the Mellin transform-pairs from the bilateral Laplace transform
and its inverse given by

ḡ(p) =

∞∫

−∞
e−ptg(t)dt, g(t) =

1

2πi

c+i∞∫

c−i∞
ept ḡ(p)dp.

3. Show that

M

[
1

ex + e−x

]
=Γ(p)L(p),

where L(p)=
1

1p
− 1

3p
+

1

5p
− · · · is the Dirichlet L-function.

4. Show that

M

{
1

(1 + ax)n

}
=

Γ(p)Γ(n− p)

ap Γ(n)
.

5. Show that

M {x−nJn(ax)}= 1

2

(a
2

)n−p Γ
(p
2

)

Γ
(
n− p

2
+ 1

) , a > 0, n >−1

2
.

6. Show that
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(a) M −1
[
cos

(πp
2

)
Γ(p) f̃(1− p)

]
=Fc

{√
π

2
f(x)

}
,

(b) M −1
[
sin

(πp
2

)
Γ(p) f̃(1− p)

]
=Fs

{√
π

2
f(x)

}
.

7. If I∞n f(x) denotes the nth repeated integral of f(x) defined by

I∞n f(x) =

∞∫

x

I∞n−1f(t)dt,

show that

(a) M

⎡
⎣

∞∫

x

f(t)dt, p

⎤
⎦=

1

p
f̃(p+ 1),

(b) M [I∞n f(x)] =
Γ(p)

Γ(p+ n)
f̃(p+ n).

8. Show that the integral equation

f(x) = h(x) +

∞∫

0

g(xξ) f(ξ) dξ

has the formal solution

f(x) =
1

2πi

c+i∞∫

c−i∞

[
h̃(p) + g̃(p) h̃(1− p)

1− g̃(p) g̃(1− p)

]
x−p dp.

9. Find the solution of the Laplace integral equation

∞∫

0

e−xξ f(ξ) dξ=
1

(1 + x)n
.

10. Show that the integral equation

f(x) = h(x) +

∞∫

0

f(ξ) g

(
x

ξ

)
dξ

ξ

has the formal solution

f(x) =
1

2πi

c+i∞∫

c−i∞

x−p h̃(p)
1− g̃(p)

dp.
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11. Show that the solution of the integral equation

f(x) = e−ax +

∞∫

0

exp

(
−x
ξ

)
f(ξ)

dξ

ξ

is

f(x) =
1

2πi

c+i∞∫

c−i∞
(ax)−p

{
Γ(p)

1− Γ(p)

}
dp.

12. Assuming (see Harrington, 1967)

M
[
f(reiθ)

]
=

∞∫

0

rp−1f(reiθ) dr, p is real,

and putting reiθ = ξ, M {f(ξ)}=F (p) show that

(a) M [f(reiθ); r→ p] = exp(−ipθ)F (p).
Hence, deduce

(b) M −1 {F (p) cos pθ}=Re[f(reiθ)],

(c) M −1 {F (p) sin pθ}=−Im[f(reiθ)].

13. (a) If M [exp(−r)] =Γ(p), show that

M
[
exp(−reiθ)]=Γ(p) e−i pθ,

(b) If M [log(1 + r)] =
π

p sinπp
, then show that

M
[
Re log (1 + reiθ)

]
=
π cos pθ

p sinπp
.

14. Use M −1

{
π

sin pπ

}
=

1

1 + x
= f(x), and Exercises 12(b) and 12(c), re-

spectively, to show that

(a) M −1

{
π cos pθ

sin pπ
; p→ r

}
=

1+ r cos θ

1 + 2r cos θ+ r2
,

(b) M −1

{
π sin pθ

sin pπ
; p→ r

}
=

r sin θ

1 + 2r cos θ+ r2
.

15. Find the inverse Mellin transforms of

(a) Γ(p) cos pθ, where− π

2
<θ<

π

2
, (b) Γ(p) sin pθ.
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16. Obtain the solution of Example 8.4.2 with the boundary data

(a) φ(r, α) =φ(r, −α) =H(a− r).

(b) Solve equation (8.4.5) in 0< r<∞, 0<θ<α with the boundary
conditions φ(r, 0)= 0 and φ(r, α) = f(r).

17. Show that

(a)
∞∑
n=1

cos kn

n2
=

[
k2

4
− πk

2
+
π2

6

]
, and (b)

∞∑
n=1

1

n2
=
π2

6
.

18. If f(x) =
∞∑
n=1

ane
−nx, show that

M {f(x)}= f̃(p) = Γ(p) g(p),

where g(p) =
∞∑
n=1

an n
−p is the Dirichlet series.

If an=1 for all n, derive

f̃(p) =Γ(p) ζ(p).

Show that

M

{
exp(−ax)
1− e−x

}
=Γ(p) ξ(p, a).

19. Show that

(a)

∞∑
n=1

(−1)n−1

np
=(1− 21−p) ζ(p).

(b) M

{ ∞∑
n=1

(−1)n−1f(nx)

}
=(1− 21−p) ζ(p)f̃(p).

Hence, deduce

(c)

∞∑
n=1

(−1)n−1

n2
=
π2

12
, (d)

∞∑
n=1

(−1)n−1

n4
=

(
7

8

)
π4

90
.

20. Find the sum of the following series

(a)

∞∑
n=1

(−1)n−1

n2
cos kn, (b)

∞∑
n=1

(−1)n−1

n
sin kn.
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21. Show that the solution of the boundary value problem

r2φrr + rφr + φθθ =0, 0<r <∞, 0<θ<π

φ(r, 0) =φ(r, π) = f(r),

is

φ(r, θ) =
1

2πi

c+i∞∫

c−i∞
r−p

f̃(p) cos
{
p
(
θ− π

2

)}
dp

cos
(πp

2

) .

22. Evaluate ∞∑
n=1

cos an

n3
=

1

12
(a3 − 3πa2 + 2π2a).

23. Prove the following results:

(a) M

⎡
⎣

∞∫

0

ξnf(xξ) g(ξ)dξ

⎤
⎦= f̃(p) g̃(1 + n− p),

(b) M

⎡
⎣

∞∫

0

ξnf

(
x

ξ

)
g(ξ)dξ

⎤
⎦= f̃(p) g̃(p+ n+ 1).

24. Show that

(a) W−α[e−x] = e−x, α > 0,

(b) W
1
2

[
1√
x

exp
(−√

x
)]

=
K1(

√
x)√

πx
, x> 0,

whereK1(x) is the modified Bessel function of the second kind and order
one.

25. (a) Show that the integral (Wong, 1989, pp. 186–187)

I(x) =

π/2∫

0

J2
ν (x cos θ) dθ, ν >−1

2
,

can be written as a Mellin convolution

I(x) =

∞∫

0

f(xξ) g(ξ) dξ,

where

f(ξ) = J2
ν (ξ) and g(ξ) =

{
(1− ξ2)−

1
2 , 0<ξ < 1

0, ξ≥ 1

}
.
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(b) Prove that the integration contour in the Parseval identity

I(x) =
1

2πi

c+i∞∫

c−i∞
x−p f̃(p) g̃(1− p) dp, −2ν < c< 1,

cannot be shifted to the right beyond the vertical line Re p=2.

26. If f(x) =

∞∫

0

exp(−x2t2) · sin t
t2

J1(t)dt, show that

M {f(x)}=
Γ

(
p+

3

2

)
Γ

(
1− p

2

)

pΓ(p+ 3)
.

27. Prove the following relations to the Laplace and the Fourier transforms:

(a) M [f(x), p] =L [f(e−t), p],

(b) M [f(x); a+ iω] =F [f(e−t)e−at;ω],

where L is the two-sided Laplace transform and F is the Fourier trans-
form without the factor (2π)−

1
2 .

28. Prove the following properties of convolution:

(a) f ∗ g= g ∗ f,

(c) f(x) ∗ δ(x− 1)= f(x),

(b) (f ∗ g) ∗ h= f ∗ (g ∗ h),
(d) δ(x− a) ∗ f(x) = a−1f

(x
a

)
,

(e) δ n(n− 1) ∗ f(x) =
(
d

dx

)n
(xnf(x)),

(f)

(
x
d

dx

)n
(f ∗ g) =

[(
x
d

dx

)n
f

]
∗ g= f ∗

[(
x
d

dx

)n
g

]
.

29. If M {f(r, θ)}= f̃(p, θ) and ∇2f(r, θ) = frr +
1
r fr +

1
r2 fθθ, show that

M
{∇2f(r, θ)

}
=

[
d2

dθ2
+ (p− 2)2

]
f̃(p− 2, θ).



CHAPTER 28

Series Solutions
Near a Regular
Singular Point

REGULAR SINGULAR POINTS

The point x0 is a regular singular point of the second-order homogeneous linear differential equation

if XQ is no t a n ordinary point (see Chapter 27) bu t both (x — x0)P(x) an d (x — x0)
2Q(x) ar e analyti c at XQ. We only

consider regular singular points at XQ = 0; if this is not the case, then the change of variables t = x — XQ will translate
XQ t o th e origin .

METHOD OF FROBENIUS

Theorem 28.1. I f x = 0 is a regular singular point of (28.1), then the equation has at least one solution of
the form

where A , an d an ( « = 0, 1 , 2 , ... ) ar e constants . Thi s solutio n i s vali d i n a n interva l
0 < x < R for some real number R.

To evaluate the coefficient s an and A , in Theorem 28.1 , on e proceed s a s i n th e powe r serie s method of
Chapter 27. The infinite series

with its derivatives
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and

are substituted into Eq. (28.1). Terms with like powers of x are collected together and set equal to zero. When
this is done for x" the resulting equation is a recurrence formula . A quadratic equation in A, , called th e indicial
equation, arises when the coefficient of x° is se t to zero and a0 is left arbitrary.

The two roots o f the indicial equatio n can be real o r complex. If complex the y will occur in a conjugate
pair and the complex solution s that they produce can be combined (b y using Euler's relation s an d the identity
xa± ib _ xag ± ib i n  ̂t o form reaj solutions . In this book we shall, for simplicity , suppose that both roots of the
indicial equatio n ar e real . Then, i f A , is take n as th e larger indicia l root , A = A x >  A2, the method o f Frobenius
always yields a solution

to Eq. (28.1). [W e have written an(k]) t o indicate th e coefficients produced by the method when A = Ax.]
If P(x) and Q(x) ar e quotient s o f polynomials, i t i s usually easier firs t t o multiply (28.1) b y thei r lowest

common denominator an d then to apply the method of Frobenius t o the resulting equation .

GENERAL SOLUTION

The method of Frobenius alway s yields one solution to (28.1) o f the form (28.5). The general solution (see
Theorem 8.2 ) ha s the form y = c^y^x) + C2y2(x) wher e c1 and c2 are arbitrary constants and y2(x) i s a  secon d
solution of (28.1) that is linearly independent from yi(x). Th e method for obtaining this second solution depends
on the relationship between the two roots of the indicial equation .

Case 1. I f A! - A 2 is not an integer, then

where y2(x) i s obtained in an identical manner as y\(x) b y the method of Frobenius, using A^ m place of Ax.

Case 2. I f A x = A2, then

To generate thi s solution, keep th e recurrence formul a in terms of A and use i t t o find th e coefficients
an (n > 1) in terms of both A and a0, where the coefficient a0 remains arbitrary . Substitute these an into
Eq. (28.2) to obtain a  function y(k, x) which depends on the variables A and x. Then

Case 3. I f Ax - A 2 = N, a positive integer, then

To generate thi s solution, first try the method of Frobenius. wit h A2. If it yields a second solution , then
this solution is y2(x), havin g the form of (28.9) with d^ = 0. Otherwise, proceed as in Case 2 to generate
y(k, x), whence
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Solved Problems

28.1. Determin e whether x = 0 is a regular singular point of the differential equatio n

As show n i n Proble m 27.1 , x = 0 is a n ordinar y pon t o f thi s differentia l equation , s o i t canno t b e a  regular
singular point.

28.2. Determin e whether x = 0 is a regular singular point of the differential equatio n

Dividing by 2x2, we have

As shown in Problem 27.7 , x = 0 is a singular point. Furthermore, bot h

are analytic everywhere: th e firs t i s a polynomial and the second a constant. Hence , both are analytic at x = 0, and
this point is a regular singular point.

28.3. Determin e whether x = 0 is a regular singular point of the differential equatio n

Dividing by x3, we have

Neither of these functions is defined at x = 0, so this point is a singular point. Here ,

The first of these terms is analytic everywhere, but the second is undefined at x = 0 and not analytic there. Therefore,
x = 0 is not a regular singular point for the given differential equation .

28.4. Determin e whether x = 0 is a regular singular point of the differential equatio n

Dividing by &c 2, we hav e

Neither of these functions is defined at x = 0, so this point is a singular point. Furthermore, both

are analytic everywhere: th e firs t i s a constant an d the second a  polynomial. Hence, both are analytic at x = 0, and
this point is a regular singular point.
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28.5. Fin d a recurrence formula an d the indicia! equation for an infinite serie s solutio n aroun d x = 0 for the
differential equatio n given in Problem 28.4 .

It follows from Proble m 28.4 tha t x = 0 is a regular singular point of the differential equation , so Theorem 24.1
holds. Substitutin g Eqs. (28.2) throug h (28.4) int o the lef t sid e o f th e give n differentia l equatio n an d combining
coefficients o f like powers o f x, w e obtain

Dividing by x^ and simplifying , w e have

Factoring the coefficient of an and equating the coefficient of each powe r o f x to zero, we fin d

and, for n > 1,

or,

Equation (2 ) is a recurrence formula for this differential equation .
From (1), either a0 = 0 or

It is convenient to keep a0 arbitrary; therefore, we must choose X  to satisfy (3) , which is the indicial equation.

28.6. Fin d the general solution nea r x = 0 of 8x1y" + lOxy' + (x - l)y = 0.

The roots of the indicial equation give n by (3) of Problem 28. 5 ar e X j =  ̂ , and X 2 = — j. Since X j - X 2 = |,
the solution is given by Eqs. (28.5) an d (28.6). Substitutin g X = ^ into the recurrence formula (2) of Problem 28. 5
and simplifying , w e obtain

Thus,

and

Substituting X  = -y int o recurrence formula (2) of Problem 28.5 an d simplifying, w e obtain

Thus,

and
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The genera l solutio n is

where ki = Cia0 and k2 = C2a0.

28.7. Fin d a  recurrence formula and the indicia! equation for an infinite series solution around x = 0 for the
differential equatio n

It follows from Proble m 28.2 that x = 0 is a regular singular point of the differential equation , so Theorem 28.1
holds. Substitutin g Eqs. (28.2) throug h (28.4) int o the lef t sid e o f th e give n differentia l equatio n an d combining
coefficients o f like powers o f x, w e obtain

Dividing by x^" an d simplifying , w e hav e

Factoring the coefficient of an and equating each coefficient to zero, w e fin d

and, for n > 1,

or,

Equation (2 ) is a recurrence formula for this differential equation .
From (_/) , either a0 = 0 or

It i s convenient to keep a0 arbitrary; therefore, We require A , to satisfy th e indicial equation (3).

28.8. Fin d the general solution near x = 0 of 2x2y" + 7x(x + I)/ - 3y = 0.

The root s of the indicia l equation give n by (3) of Problem 28.7 are A, j = -| and A, 2 = -3. Sinc e A, j —  A,2 = |, the

solution i s give n b y Eqs . (28.5) an d (28.6). Substitutin g A , = £ int o (2 ) o f Proble m 28. 7 an d simplifying ,
we obtain

Thus,

and
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Substituting X  = -3 int o (2) of Problem 28. 7 an d simplifying , w e obtain

Thus,

and, sinc e a4 = 0, an = 0 for n > 4. Thus,

The genera l solutio n is

where ki = Cia0 and k2 = c2a0.

28.9. Fin d the general solution near x = 0 of 3.x2)/' - xy' + y = 0.
Here P(x) = -l/(3x) an d Q(x) = l/(3x2); hence , x = 0 is a regular singular point and the method o f Frobenius is

applicable. Substitutin g Eqs. (28.2) through (28.4) int o the differentia l equatio n and simplifying , w e have

jt^SA,2 - 4A , + l]a0 + ̂ 1 + 1[3X2 + 2X]a1 + •• • +^ + "[3(X + n)2 -4(X + n) + l]an + ••• = 0

Dividing by x an d equating all coefficients to zero, w e fin d

and

From (1), we conclude tha t the indicia l equation i s 3A,2 — 4A, + 1  = 0, which has roots A, j = 1  and A, 2 = i.

Since A, j —  A,2 =  |, th e solutio n is given by Eqs . (28.5) and (28.6). Not e that for eithe r value of A, , (2 ) i s satisfied by
simply choosing an = 0, n > 1. Thus,

and the general solutio n is

where k± = ĉ  and k2 = c2aQ.

28.10. Us e the method of Frobenius to find one solution near x = 0 of xzy" +  xy' + x2y = 0.
Here P(x) = 1/x an d Q(x) = 1, so x = 0 i s a  regular singula r point and th e method o f Frobenius i s applicable .

Substituting Eqs . (28.2) throug h (28.4) int o th e lef t sid e o f th e differentia l equation , a s given , an d combinin g
coefficients o f like powers o f x, w e obtain

Thus,

and, fo r n > 2, (X, + n)2an + an _ 2 = 0, or,
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The stipulation n > 2 is required in (3) because an _ 2 is not defined for n = 0 or n = 1. From (1), the indicial equatio n
is X2 = 0, which has roots, A, j = A ^ = 0. Thus, we will obtain only one solution of the form of (28.5); th e second solution,
y2(x), wil l have the form o f (28.7).

Substituting X = 0 int o (2 ) an d (3), w e fin d tha t a j = 0 an d a n = -(l/w2)an_2- Sinc e « i = 0, i t follow s tha t
Q = a3 = a5 = a7= •••. Furthermore ,

and, i n general , , (k= 1 , 2,3, ...) . Thus,

28.11. Fin d the general solution near x = 0 to the differential equatio n given in Problem 28.10.
One solution is given by (4) in Problem 28.10. Because the roots of the indicial equation are equal, we use Eq. (28.8)

to generate a  second linearl y independent solution . The recurrence formula is (3) of Problem 28.10, augmented by (2)
of Problem 28.10 for the special case n = 1. From (2) , aj = 0, which implies that 0 = a3 = as = a7 = • • •. Then, from (3),

Substituting these values into Eq. (28.2), we have

Recall tha t In x. (When differentiating wit h respect t o X, x can be thought of as a constant.) Thus,

and

which is the form claimed i n Eq. (28.7). Th e genera l solutio n is y = c^^x) + C2y2(x).



282 SERIES SOLUTION S NEA R A REGULAR SINGULA R POIN T [CHAP. 28

28.12. Us e the method of Frobenius to find one solution near x = 0 of xzy" - xy' + y = 0.

Here P(x) = -1/x an d Q(x) = l/x2, s o x = 0 is a regular singular point and the method of Frobenius is applicable.
Substituting Eqs. (28.2) throug h (28.4) int o the left side of the differential equation , as given, and combining coefficients
of like powers of x, we obtain

Thus,

and, in general ,

From (1), th e indicial equation i s ( A - I) 2 = 0, which ha s roots A : = A2 = 1. Substituting X = 1 into (2) , we obtain
n2an = 0, which implies that an = 0, n > 1. Thus, yi(x) = a^.

28.13. Fin d the general solution nea r x = 0 to the differential equatio n given in Problem 28.12.
One solution is given in Problem 28.12. Because th e roots of the indicial equation are equal, we use Eq. (28.8)

to generate a  second linearl y independent solution . The recurrenc e formul a is (2) of Problem 28.12 . Solvin g it for
an, i n term s o f A , we fin d tha t an = Q (n> 1), an d whe n thes e value s ar e substitute d int o Eq . (28.2), w e hav e
y (A, x) = a0x^. Thus,

and

which is precisely the form of Eq. (28.7), where, for this particular differential equation , bn(ki) = 0(n = 0, 1,2, ...) .
The genera l solutio n is

where fcj = C^Q, and k2 = C2a0.

28.14. Us e the method of Frobenius to find one solution near x = 0 of x^y" + (x2 - 2x)y' + 2y = 0.
Here

so x = 0 i s a  regula r singula r point an d th e metho d o f Frobeniu s i s applicable . Substituting , Eqs. (28.2) throug h
(28.4) int o the lef t sid e o f th e differentia l equation , a s given , and combinin g coefficients of lik e powers o f x, w e
obtain

Dividing by x^, factoring the coefficien t of an, and equating the coefficien t of each powe r o f x to zero, we obtain

and, in general, [( A + n) - 2 ] [(A + n) - l]an + (A + n - l)an _  i = 0, or,

From (_/) , the indicial equation i s A2 - 3 A + 2 = 0, which has roots A : = 2 and A2 = 1. Since A : - A ^ = 1, a positive
integer, th e solutio n i s give n b y Eqs . (28.5) an d (28.9). Substitutin g A , = 2 int o (2) , w e hav e an = —(lln)an_1,
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from whic h we obtain

and, in general, ak = Thus,

28.15. Fin d the general solution near x = 0 to the differential equatio n given in Problem 28.14.
One solutio n is given by (3) i n Problem 28.14 for the indicial . root A, j = 2. If we tr y the metho d o f Frobenius

with the indicial root X 2 = 1 , recurrence formula (2) of Problem 28.14 become s

which leaves a1; undefined because the denominator is zero when n=\. Instead , we must use (28.10) to generate a
second linearl y independent solution. Using the recurrence formula (2) of Problem 28.14 to solve sequentially for
an (n = 1, 2, 3, ... ) in terms of X , we fin d

Substituting these values into Eq. (28.2) w e obtain

and, since X  - X 2 = X - 1,

Then

and

This i s th e for m claime d i n Eq . (28.9), wit h d_i = -l, d0 = aQ, di = 0, d3 =|a0,.... Th e genera l solutio n is
y = crf^x) + C2y2(x).
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28.16. Us e the method of Frobenius to find one solution near x = 0 of Jt2/' + xy' + (x2 - \)y = 0.
Here

so x = 0 is a regular singular point and the method of Frobenius is applicable. Substituting Eqs. (28.2) throug h (28.4)
into the lef t sid e of the differentia l equation , as given , and combining coefficients of like powers of x, we obtain

Thus,

and, for n > 2, [(A + nf - l]an + an _ 2 = 0, or,

From (_/) , the indicial equation is X2 - 1  = 0, which has roots A ^ = 1 and A2 = —1. Sinc e A J - A ^ = 2, a positive integer,
the solution is given by (28.5) an d (28.9). Substitutin g X  = 1  into (2) and (3), we obtain aj = 0 and

Since «i = 0, it follows that 0 = a3 = a5 = a7= •••. Furthermore,

and, in general,

Thus,

28.17. Fin d the general solution near x = 0 to the differential equatio n given in Problem 28.16.
One solutio n is given by (4) in Problem 28.16 for th e indicia l root A : = 1 . If we tr y th e metho d of Frobeniu s

with the indicial root A 2 =—1, recurrence formula (3) of Problem 28.16 become s

which fail s t o define a2 because th e denominator is zero when n = 2. Instead, we must use Eq. (28.10) to generat e
a secon d linearl y independen t solution . Usin g Eqs . (2)  and  (3) of  Proble m 28.1 6 to  solv e sequentiall y for
an(n= 1 , 2, 3, ... ) in terms of A, we find 0  = al = a3 = a5 = ••• an d

Thus,

Since A-A2 = A + 1,
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and

Then

This i s i n th e for m o f (28.9) wit h d -^ = da = aa, di = 0, d2 = a0, di = 0, d4 = •a0,....The general solutio n is
y = c1y1(x) + c2y2(x).

28.18. Us e the method o f Frobenius to find one solution nea r x = 0 of x2y" + (x2 + 2x)y' -  2 y = 0.
Here

so x = 0 is a regular singular point and the method o f Frobenius i s applicable. Substitutin g Eqs. (28.2) through (28.4)
into the lef t sid e of the differentia l equation , a s given , and combining coefficient s o f like powers o f x, we obtai n

Dividing by x^, factoring the coefficient o f an, and equating t o zero the coefficient o f each power o f x, we obtai n

and, fo r n > 1,

which i s equivalent t o

From (_/) , the indicial equatio n i s X2 + X - 2  = 0, which has roots X j = 1 and  ̂= -2. Sinc e X j - ^ = 3, a positive
integer, the solution i s given by Eqs. (28.5) and (28.9). Substitutin g X = 1  into (2), we obtain an = [-11 (n + 3)]an _ 1;

which i n turn yields

and
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and, in general ,

Hence,

which can be simplifie d t o

28.19. Fin d the general solution near x = 0 to the differential equatio n given in Problem 28.18.

One solutio n is give n by (3) i n Problem 28.1 8 for th e indicia l root A, j = 1 . If we tr y th e metho d o f Frobeniu s
with the indicial root X 2 = -2, recurrenc e formul a (2) of Problem 28.18 becomes

which does define all an(n > 1). Solving sequentially, we obtain

and, in general, ak = (-I)ka0lk\. Therefore ,

This is precisely in the form of (28.9), with rf_j = 0 and dn = (-I)"a0/n\. Th e genera l solutio n is

28.20. Fin d a general expression for the indicial equation of (28.1).

Since x = 0 is a regular singula r point; xP(x) an d x2Q(x) ar e analyti c near th e origin and can be expanded i n
Taylor serie s there . Thus,

Dividing by x and x2, respectively, we have

Substituting these two results with Eqs. (28.2) through (28.4) int o (28.1) and combining, we obtain

which can hold only if

Since a0^0 (a0 i s an arbitrary constant, hence can be chosen nonzero) , th e indicial equation is
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28.21. Fin d the indicial equation o f x2y" +  xe*y' + (x3 - \)y = 0 if the solution is required near x = 0.

Here

and we have

from which/7 0 = 1 and qQ = —1. Using (_/ ) of Problem 28.20 , we obtain the indicial equation as X2 - 1  = 0.

28.22. Solv e Problem 28.9 by an alternative method.

The give n differential equation , 3x2y" — xy' + y = 0, is a special case of Ruler's equation

where bj(j=0, 1 , .. . ,  n) i s a constant. Euler's equation can always be transformed into a linear differential equatio n
with constant coefficients b y the change o f variables

It follows from (2 ) and fro m th e chain rule and th e product rule of differentiation tha t

Substituting Eqs. (2), (3), an d (4) into the given differential equatio n and simplifying , w e obtain

Using the method o f Chapter 9  we find tha t the solution of this last equation is y = c^ + c2e<1/3)z. Then using (2)
and noting that e(1/3)z = (e1)113, we have as before,

28.23. Solv e the differential equatio n given in Problem 28.12 by an alternative method.

The give n differential equation , x2y" — xy' + y = 0, is a  special case of Euler's equation , (_/ ) o f Problem 28.22 .
Using the transformations (2), (3), and (4) of Problem 28.22 , we reduce the given equation to

The solution to this equation is (see Chapter 9 ) y = c^ + c2zez. Then, using (2) of Problem 28.22, we have for the
solution of the original differential equatio n

as before.
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28.24. Fin d the general solution near x = 0 of the hypergeometric equation

where A and B are any real numbers, and C is any real nonintegral number.
Since x = 0 is a regular singular point, the method of Frobenius is applicable. Substituting , Eqs. (28.2) throug h

(28.4) int o the differentia l equation , simplifyin g an d equating the coefficient of each power o f x t o zero, we obtain

as the indicial equation and

as the recurrence formula. The roots of (1) are A^ = 0 and A^ = 1 - C ; hence, A : - A ^ = C - 1 . Since C is not an integer,
the solution of the hypergeometric equation is given by Eqs. (28.5) an d (28.6).

Substituting A , = 0 into (2), we hav e

which is equivalent to

Thus

and y>i(x) = aQF(A, B; C; x), wher e

The series F(A, B; C; x) is known as the hypergeometric series; it can be shown that this series converges for -1 <  x < 1.
It is customary to assign the arbitrary constant a g the value 1. Then y\(x) = F(A, B; C; x) and the hypergeometric serie s
is a solution of the hypergeometric equation.

To find y2(x), w e substitute A, = 1 - C into (2) and obtain

or

Solving for an in terms of a0, and again settin g a0 = 1 , it follows that

The general solutio n is y = c^^x) + C2y2(x).
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Supplementary Problems

In Problems 28.25 through 28.33, find tw o linearly independent solution s to the given differential equations .

28.25.

28.27.

28.29.

28.31.

28.33.

2x2y"-xy' + (l-x)y = 0

3x2y" - 2xy' - (2 + x2)y = 0

x2y" + xy'

xy" -(x +

x2y" + (x2

+ x3y = 0

l)y'-y = 0

- 3x)y' -(x-4)y = 0

28. 26. 2x2y" + (x2 - x)y' + y = 0

28.28. xy" + y'-y = 0

28. 30. x2y" + (x-x2)y'-y = 0

28.32. 4x2y" + (4x + 2x2)y' + (3x - l)y = 0

In Problem 28.34 through 28.38, find the general solution to the given equations using the method described in Problem 28.22.

28.34. 4x2y" + 4xy' - y = 0

28. 36. 2x2y" + 1 Ley' + 4y = 0

28.38. x2y"-6xy' = 0

28.35. x2y"-3xy' + 4y = 0

28.37. x2y"-2y = 0



CHAPTER 29

Some Classical
Differential Equations

CLASSICAL DIFFERENTIAL EQUATIONS

Because some special differential equations have been studied for many years, both for the aesthetic beauty
of thei r solution s an d because the y lend themselve s to many physical applications , the y may b e considere d
classical. We have already seen an example of such an equation, the equation of Legendre, in Problem 27.13.

We will touch upon four classical equations: the Chebyshev differential equation , named in honor of Pafnuty
Chebyshey (1821-1894); the Hermite differential equation , so named because of Charles Hermite (1822-1901);
the Laguerre differentia l equation , labeled afte r Edmon d Laguerre (1834-1886); and the Legendre differentia l
equation, so titled because of Adrien Legendre (1752-1833). These equations are given in Table 29-1 below:

Table 29-1
(Note: n  = 0, 1,2,3, ...)

Chebyshev Differential Equation

Hermite Differential Equation

Laguerre Differential Equation

Legendre Differential Equation

(1 - x2) y" -xy' + n2y = 0

y" - 2xy' + 2ny = 0

xy" +  (1 - *)/ + ny = 0

(1 - x2)y" - 2xy' + n(n + l)y =0

POLYNOMIAL SOLUTIONS AND ASSOCIATED CONCEPTS

One of the most important properties these four equation s possess , is th e fact tha t they have polynomial
solutions, naturally called Chebyshev polynomials, Hermite polynomials, etc.

There ar e many ways t o obtain thes e polynomial solutions . On e way is t o employ serie s techniques , as
discussed in Chapters 27 and 28. An alternate way is by the use of Rodrigues formulas, so named in honor of
O. Rodrigues (1794-1851), a French banker. This method makes use of repeated differentiations (see , for example,
Problem 29.1) .

These polynomial solutions can also be obtained by the use of generating Junctions. In this approach, infinite
series expansions of the specific function "generates" the desired polynomials (see Problem 29.3) . It should be
noted, from a  computational perspective , that this approach becomes mor e time-consuming the further alon g
we go in the series.
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