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THE RIEMANN-LIOUVILLE
FRACTIONAL INTEGRAL

1. INTRODUCTION

After the lengthy justifications of Chapter II, we begin our mathemati-
cal development of the fractional calculus. We start with a formal
definition of the Riemann-Liouville fractional integral, carefully de-
lineating the class of functions to which this fractional operator may
be applied. Numerous examples, some trivial and some not so elemen-
tary, are given and discussed. This analysis provides a convenient
vehicle for introducing certain new functions such as E(v,a),
C(v,a), S,(v, a) that play a forward role in the fractional calculus and
fractional differential equations. (Properties of these functions are
examined in some detail in Appendix C.)

Certain techniques are developed that enable us to find fractional
integrals of more complicated functions. In Section III-4 we consider
the Dirichlet formula and analyze some of its consequences. Most
prominent is its use in the proof of the law of exponents for fractional
integrals. That is, we shall show that ;D #(,D,;*) =,D,;*~" for all
positive u and v (Theorem 1). It also will be used to obtain the
fractional integrals of certain nonelementary functions.

In later sections we examine the relations that exist between
(ordinary) derivatives of fractional integrals and fractional integrals of
derivatives. Many ancillary results in the theory of the fractional
calculus may be deduced from these theorems. The penultimate
section is devoted to the problem of finding the Laplace transform of
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DEFINITION OF THE FRACTIONAL INTEGRAL 45

_fractional integrals, together with the inevitable consequences. The
Laplace transform frequently will be exploited in remaining chapters,
especially in our study of fractional differential equations. In the final
section we discuss Leibniz’s formula for fractional integrals and give
some interesting applications of this rule.

2. DEFINITION OF THE FRACTIONAL INTEGRAL

As we have stated before, our objective is to investigate various
aspects of the Riemann-Liouville fractional integral. We begin with a
formal definition (see Definition 1 below).

Let X be a positive number and let f be continuous on [0, X].
~Then if v > 1,

[ (- &) 7 f(£) dé (2.1)

exists as a Riemann integral for all ¢ € [0, X]. Of course, (2.1) will
exist under more general conditions. For example, if f is continuous
on (0, X'] and behaves like t* for —1 < A < 0 in a neighborhood of
the origin and/or if 0 < Rev < 1, then (2.1) exists as an improper
Riemann integral. The following definition, however, is sufficiently
broad for our purposes.

Definition 1. Let Rev > 0 and let f be piecewise continuous on
J' = (0, ») and integrable on any finite subinterval of J = [0, ). Then
for t > 0 we call

1 t
D7) = Fy fo (t — &) 7 f(€) de (2:2)

the Riemann-Liouville fractional integral of f of order v.

Let us discuss this definition. As we have observed above, (2.2) is an
improper integral if 0 < Rev < 1. We require f to be piecewise
continuous only on J’ = (0, ) (the interval J excluding the origin) to
accommodate functions that behave like In ¢ or t* (for —1 < u < 0)
in a neighborhood of the origin. We shall denote by C the class of
functions described in Definition 1. [One readily may generalize C to
include, for example, such functions as f(£) = [§ —al’, A > —1,0 <
a < t. We seldom shall have occasion to do so.]
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For example, if f(t) = t* with w > —1, then [see (II-6.3), p. 36]

I'(p+1)
=F(p+v+1)

oDV t* prry t>0 (2.3)

[since (2.2) is now essentially the beta function]. Because u + Re v
may be negative, we see from this example why we must include the
caveat ¢+ > 0 in our definition of the fractional integral. [Of course, if
w > 0, then (2.3) is continuous on J.] To avoid minor mathematical
complications not related to the fractional calculus, and with little loss
of generality, we shall, as a practical matter, assume that v is real.
Occasionally, we indicate that certain formulas are valid for Rev > 0
rather than just for v > 0. A discussion of fractional operators when v
is purely imaginary may be found in [19].
If we write (2.2) as the Stieltjes integral

—p 1 t
D7) = Ty S 1(6) dad).
where

a(é) = —(t - &) (2.4)

is a (continuous) monotonic increasing function of ¢ on [0, ¢], then if
f is continuous on [0, ¢], the first mean value theorem for integrals
[45, p. 107] implies that

[[1(€) da(€) = f(x)e*
for some x € [0, t]. Hence
lim 4 D) = 0. 2.5)

If f is not continuous (but still of class C), then (2.5) need not be
true. In fact, we see from (2.3) with v > 0, u > —1, that

0, w+v>0
lir%OD,"’t“ ={I'(p + 1), pw+v=0
o oo, w+v <0.
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Furthermore, we also conclude from (2.3) that even the continuity of f
at the origin does not guarantee the differentiability of (D, *f(¢) at
= 0. (For example, let & > 0and u + v < 1.)
At times it may be expedient to consider certain subclasses of C.
For instance, in Chapter IV we introduce a class of functions that
includes functions of the form

t*n(t)

where A > —1 and 7n(¢) is analytic. At other times we shall find it
convenient to take the Laplace transform of the fractional integral. In
such cases we require that f be of exponential order. Since we mainly
shall be considering integrals of the form (2.2), the notation will be
simplified by dropping the subscripts 0 and ¢ on ,D,”*, as was done in
Section II-7. Occasionally, we shall use them for emphasis, or if there
1s a possibility of ambiguity, or if we wish to consider a fractional
integral whose lower limit is not zero.

3. SOME EXAMPLES OF FRACTIONAL INTEGRALS -

Before we embark on a theoretical analysis of the fractional integral,
let us calculate the fractional integrals of a few elementary functions.
We already have shown in (2.3) that

I'(p+1)

D™tk =
I'(pw +v+1)

thtY v>0, uw>-1, t>0. (3.1)

In particular, if u = 0, the fractional integral of a constant K of order
VIS

K
D'K=—— ¢, > 0. 3.2
T(v + 1) g (3:2)

Perhaps the reader may have wondered why we did not give a few
additional examples of fractional integrals. The answer is simple—
fractional integrals, even of such elementary functions as exponentials
and sines and cosines, lead to higher transcendental functions—as we
shall now demonstrate.

Suppose that

f(2) = e
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where a is a constant. Certainly, e* is of class C, and by Definition 1,

D™ ve% = —1—ft(t — &) et de v>0 (3.3)
o) Jo , : :

If we make the change of variable x = t — £, (3.3) becomes

at

D7 Ve = ‘ ftx”_le_”dx v>0 (3.4)
70 s : : :

Clearly, (3.4) is not an elementary function. But it is closely related to
the transcendental function known as the incomplete gamma function
[(B-2.19), p. 300, Section C-2]. For Re v > 0 the incomplete gamma
function y*(v, t) may be defined as

y¥(v,t) = ! ftf"_le_g dé (3.5)
’ F(V)tv 0o .
Thus we may write (3.4) as
D7 7e* = t"e*y*(v, at). (3.6)

Since the right-hand side of (3.6) is the fractional integral of an
exponential, it is not surprising that this function frequently arises in
the study of the fractional calculus. We shall call it E (v, a),

E,(v,a) =t'e*y*(v,at). (3.7)

Some of the elementary properties of y* and E, are examined in
Appendix C.

A direct application of the definition of the fractional integral leads
to

1 .
D™” cos at = F(V)Ag Ycosa(t —€)dé, v>0  (3.8)
and
1
D™"sin at = F(V)fogv—lsin a(t —£)de,  v>0. (3.9)
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We find it convenient to define the right-hand sides of (3.8) and (3.9)
as C (v, a) and S (v, a), respectively. Properties of these functions also
are studied in Appendix C.

Thus from (3.7), (3.8), and (3.9) we have for v > 0 the compact
formulas

D™ "e” = E(v,a)
D™ cosat = C,(v,a) (3.10)
D™ "sinat = S,(v, a).

In the special case v = 3,
D% = E,(1, a)
= a~1/2¢% Erf (at)'/?, (3.11)
where Erf x is the error function (B-2.25), p. 301. Also,

D™'?cos at = C,(3,a)

2
= \/;[(cos at)C(x) + (sin at)S(x)] (3.12)

and
D™'?*sinat = S,(5,a)
2
=\ [(sin at)C(x) — (cos at)S(x)], (3.13)
where
2at
x f— ——
o

and C(x) and S(x) are the Fresnel integrals (B-2.27) and (B-2.28),
p. 301.
Simple trigonometric identities may be used to calculate other

fractional integrals of trigonometric functions. For example, from
cos28 = 2cos?’9 — 1 =1 — 2sin? 6,

t” 1
D cos?at = ———— + =C,(v,2 14
cos” a ACER) 2C,(V, a) (3.14)



50 THE RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL
and
D~ sin? v L C.(v,24) (3.15)
vsinfat = ———— — — ,2a). .
Tty 2V

We consider some slightly more complicated functions. Suppose
that

f(y=(a—-1), a>t>0.
Then f € C, and by definition,

1
I'(v)

pa=1) = s f (t— &) (a - £) de,

Rev >0, a>t>0. (3.16)

If we make the bilinear transformation

t—=¢§
X = — :
in the integrand of (3.16), we obtain
(a =)' /4 a1
D7(a—1t)' = ———— 11 —x) 7T .
(a =0 = oy 7 -x)

But the integral above is just the incomplete beta function (B-2.24),
p. 300. Thus

D™(a —1t) = ! (a —t)*""B, (v, =X —v). (3.17)
I'(v) t/a
If, in particular, a = 1, v = 3, and A = — 1, direction integration
leads to
D~ 1/? ! ! 1 L+ vt 0 <1 3.18
- = n , <t <l. .
Vi—-t Vo 1-Vt | (3.18)

As our next example we consider the logarithm. Certainly, In ¢ is of
class C, and its fractional integral of order v is

1

D7 ?Int =
T T

ft(t — &) 'Ingds,  v>o0.
0
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:]f we make the change of variable ¢ = tx, then

__,.1 tv 1Y 1 1
e D7’Int=——1Int + 1—x)"1 dx. (3.19
FIT YT Te ) VT T fo (I=x)" 'lnxde. (3.19)

But from [12, p. 538],

folx#—la —x)" VInxdr = B(p,v)[¢(n) — (p + )],

Rep >0, Rev>0, (3.20)

where B is the beta function and ¢ is the digamma function (B-2.11),
p. 299. Thus if we let u = 1 in (3.20),

14

D‘”lnt=m[lnt—y—¢(v+l)], (321)

where vy is Euler’s constant.
If in particular » = 3, then

w(%)=2—y—ln4
[21, p. 15] and

D V2Int =
Vo

More generally, from (3.20) we have

[In4t - 2]. (3.22)

T(A + 1)eA*

—v| 4A —
Dletine] = vy

[Int + (A +1) — (A +v + 1)],

A> -1, v>0 (3.23)

and with v = 2 and A = — 1

t
D V2[t=2Int] = Vrr In "

[see (B-2.13), p. 299].
Another function, which we shall encounter in our future work, is
f(t) = e=/* [If we define f(0) as zero, all the derivatives of f vanish
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at the origin. Thus f is not analytic at ¢ = 0.] We shall calculate the
fractional integral in the more general case where f(t) = tre /",
A > —1. By definition

D—v[t,\e—a/t] _ f(t _f)y 1 ,\ —a/§d§

F( )
for v > 0 and ¢ > 0. The change of variable of integration

t
x+1

£ =
immediately leads to
D7¥[tremt] = e Uy, — A, a/t) (3.24)

for v>0, A> —1, t>0. If Rea >0, then U has the integral
representation of (B-4.12), p. 305.

Our ability to calculate explicitly the fractional integral of a func-
tion f frequently depends on our proficiency in performing the
integration

fo'(t — &) 7f(£)dE, v > 0. (3.25)

However, because of the nature of the kernel (¢ — £)”~! in (3.25), it is
possible to develop certain analytical techniques that allow us to
calculate the fractional integral of a large class of functions with
minimal effort. We discuss one such technique now.

The procedure we have in mind will allow us to express the
fractional integral of an integral power of ¢ times a function f(¢) in
terms of fractional integrals of f. Using this argument we may show,
for example, that

D *[te*] = tE,(v,a) — vE,(v + 1, a). (3.26)

If f € C, then from Definition 1, p. 45,

1 t
D] = 105 [ =& e ©) g, v>0. (3.27)



SOME EXAMPLES OF FRACTIONAL INTEGRALS 53

If we replace the term in brackets in the integrand of (3.27) by the
identity

[t = (+ = O] (¢)

(i.e., we have added and subtracted ¢), then (3.27) becomes

D[4 (1)] = 1D~*f(t) — vD~* "1 (1). (3.28)

In the case f(t) = e*, formula (3.28) becomes (3.26) [see (3.10)].
Similarly, (3.28) implies that
D7 *[tcos at] =tC(v,a) —vC/(v + 1,a), v>0 (3.29)
and

D~ "[tsinat] =tS,(v,a) —vS,(v + 1,a), v > 0. (3.30)

Equation (3.28) may readily be generalized. For if p is a nonnega-
tive integer, then

()] = o L - e OldE, v>0 (331)

F()

and

e =li- (- 8" = T (-1 2]er- o

k=0

Substituting this expression in (3.31), we obtain

1 d k-1
D‘”[t”f(t)]=r(v) kzo< D\ e [ = 6T () de

= F(v) Z( 1)* i T(v + k)tP~kD~C+0f (1),

(3.32)

Using (B-2.6), p. 298, we also may write (3.32) as

G0 I o | G V- O) R EES)

k=0
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For example,

D~*[tre] = r( P Z( 1) ( )I‘(v+k)t” E (v + k,a). (3.34)

As we develop further techniques we shall be able to find fractional
integrals of still more complicated functions. For example, we show in
the next section that for v > 0 and u > —1,

D E(u,a) = E,(u + v, a). (3.35)

Now let us give a few examples of fractional integrals when the
lower limit of integration is not necessarily zero. Consider, then,

D f(t — &)t >0, 0<c<t,
DIf(1) = F()fa £ 7' f(¢)ds,  v>0, 0soe
(3.36)
where f is of class C on [c, ).
The change of variable
£=1(1 - x)
in (3.36) leads to
D Y dx 3.37
“Vf(t) = v- t — .
D) = gy [ x0T - ) dx, (3:37)
where
t—¢
T = : (3.38)

For example, suppose that

f(t) =1+,

where u > —1if ¢ = 0, and w is arbitrary if ¢ > 0. Substitution in
(3.37) leads to

t[‘L+V

D Vt+ = fx”“l(l —x)" dx.

I'(v) /o
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But the integral in the expression above is simply the incomplete beta
function. Thus

uwtv
Dvt+ =
c 7t F(V)

and if we let ¢ = 0, formula (3.39) reduces to (3.1), as it should.
Furthermore, if we let f(¢) be e* or cos at or sin at, then (3.37)
yields

B.(v,u + 1), (3.39)

D 7e® = e*E,_.(v,a)

c Tt
D cos at = (cos ac)C,_ (v, a) — (sinac)S,_.(v,a) (3.40)
.D¥sinat = (sin ac)C,_ (v, a) + (cos ac)S,_.(v, a),

which reduce to our previous formulas, (3.10), when ¢ = 0. For a table
of Riemann-Liouville fractional integrals, see [9] and Appendix D.

We conclude this section with a theoretical result. Suppose that f is
continuous on [0, X]. Then the Riemann-Liouville fractional integral
of f of order v is

1 . 1
D'”f(t)=mfo(r—f)”‘ f(¢)de, v>0, 0<t=X

LI LA dx 3.41
_r(u)fox f(t — x) dx. (3.41)

If, furthermore, we require that f(x) be analytic at x = a for all
a € [0, X], the power series

fle —x) =f(1) + Z( 1) ———= f() : (342)

converges for all x in an interval that properly contains [0, ¢]. Thus it
converges uniformly on [0, ¢].
Now substitute (3.42) in (3.41),

D*f(t) = f(t) f

1 . kf() ke
+r<v)/0x [E( R L
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By the uniform convergence we may interchange the order of summa-
tion and integration to obtain

1 i (=1 D"f(f)twk

I'(v) .20 kW (v +k) ’

D7 f(t) = 0<t=<X. (344

Thus we have expressed the fractional integral of an analytic
function in terms of ordinary derivatives of that function. If we recall
that

1
D—v—k 1) = tu+k
(1) F'v+k+1)

we also may write (3.44) as

pr) = T (0" K[t
- X ()il (3.45)

[see (B-2.6), p. 298].

4. DIRICHLET’S FORMULA

If G(x, y) is jointly continuous on [a, b] X [a, b], we know from the
elementary theory of functions that

fbdxfo(x,y)dy = fbdy be(x,y)dx. (4.1)

If, however, G is not continuous, but the integrals [*Gdy and
[y”de exist as ordinary or improper Riemann integrals, general
conditions under which the order of integration may be interchanged
are difficult to obtain. Dirichlet’s formula [48, p. 77] furnishes an
example of a function for which (4.1) is true even though G may not
be continuous. Because of the form of the integrand, this formula is
well suited to the fractional calculus.
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Dirichlet’s Formula. Let F be jointly continuous on the Euclidean
plane, and let A, u, v be positive numbers. Then

(=" ax fax(y —a)' " (x =) T F(x,y) dy
- fat(y —a)" " dy fyt(t —x)* N (x —y) T F(x, y) dr. (42)

Certain special cases are of particular interest. If a = 0, A = 1, and
F(x,y) = g(x)f(y), then (4.2) becomes

ft(t - x)* ' g(x) dxfx(x —y)" " f(y) dy
0 0
= /;)tf(Y)dy ft(t —x)“_l(x —y)"_lg(x)dx. (4.3)
Furthermore, if g(x) = 1, (4.3) assumes the form
ft(t - x)“_1 dxfx(x - y)”_lf(y)dy
0 0

= B, ) (=) "7 (5 d, (4.4)

where B is the beta function.
As an important illustration of the usefulness of Dirichlet’s for-
mula, we shall prove the law of exponents for fractional integrals.

Theorem 1. Let f be continuous on J, and let u,v > 0. Then for
all ¢,

D™[D#f(1)] = D=®*If(1) = DH[Df(1)].  (4.5)

Proof. By definition of the fractional integral,

1

t | 1 * -1
D[ D™#f(1)] e fo (t—x)"~ [W fo (x =) 7 f(y) dy| dx
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and

D=WIf(t) = F(Z%T)fot(t —y)* T f(v) dy.

Equation (4.4) now implies the truth of (4.5). ®

An alternative proof of this important theorem may be given by
noting that

D™’[D~#P(t)] = D=®**P(t)

for any polynomial P, and then applying the Weierstrass approxima-
tion theorem, see [45].

If we wish Theorem 1 to be true when u (or v) is zero (which we
do), we see that DY must be defined as the identity operator I. We
shall make this identification.

For any positive integer p and continuous function f, we have seen
that

D7f(6) = oy [ (1 = %) f(x) (4.6)

(p 1)'

is the p-fold integral of f(¢). Thus if we let u = p in (4.5), we have

D7P[D™f(t)] = D=**"f(t) = D™*[D7f(1)]. (4-7).

We see, therefore, that the p-fold integral of the fractional integral
D™¥f(t) is the fractional integral of f of order p + v, and that they
are both equal to the fractional integral of the p-fold integral of f of
order v. ‘

As we have observed before, the fractional integral of an elemen-
tary function need not be elementary. We thus may use Theorem 1 to
find the fractional integral of certain nonelementary functions. For
example, if f(¢) = e, then since e* is continuous, Theorem 1 implies
that

D7’[ D" e®] = D™ +¥)et (4.8)
for positive u and v. But from (3.10), D™*e* = E (u, a) and

DWW = E (1 + v, a).
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Thus with little effort we have established the formula

DE(u,a)=E(n + v,a), w>-1, v>0 (4.9)
[see (3.35)]. Similar arguments yield

D7’C(un,a) =C/(p +v,a), pw>-—-1, »>0 (4.10)
and

D*S(pn,a) =S, (pn +v,a), pw> =2, v>0. (4.11)

Further formulas may be obtained by the use of (3.28) and (3.32) [or
(3.33)]. For example, if we apply (3.28) to (4.9),

D_"[tE,(p,,a)] =tE(p +v,a) —vE(n +v+1,a),
L> =2, »v>0. (412)

5. DERIVATIVES OF THE FRACTIONAL INTEGRAL AND
THE FRACTIONAL INTEGRAL OF DERIVATIVES

In Section III-4 we showed that the integral of the fractional integral
was the fractional integral of the integral. We now develop similar
formulas involving derivatives. Unfortunately, the relations are not
quite as simple. The basic rules for manipulating these quantities are
given below in Theorem 2. Some examples of D?[D~”f(¢)] and
D[ D?f(t)] (where p is a positive integer) will be given.

Theorem 2. Let f be continuous on J and let » > 0. Then:
(a) If Df is of class C, then

f(0)
I'(v +1)

14

D[ Df(t)] = D=f(t) -

and
(b) If Df is continuous on J, then for ¢ > 0,

DID-1(1)] = D-[Df(1)] + LD o1

I'(v)
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Proof. To prove part (a), let € > 0, 7 > 0be assigned. Then (+ — £)* ™!
and f(£) are continuously differentiable on [n, ¢ — €]. Thus an inte-
gration by parts establishes

ftae(t — &) [Df(¢)] d¢ = vf”(t — &) 7Tf(§) de

+e’f(t =€) = (t —m) f(m).

Now take the limit as € and n independently approach zero and
divide by I'(v + 1) to obtain part (a).
To prove part (b), make the change of variable

E=1t—-x* (5.1)
(where A = 1/v) in
1 ! v—1
D7(1) = gy J (4 = €7 (€) de

to obtain
D7Vf(t) = t —
Then for ¢t > 0,

D[D™*f(1)] =

to e |fOe 1)+f —f(t—xA)dx].

Now reversing the transformation (5.1), that is, letting ¢ — x* = &,
proves part (b). W

If we apply Theorem 2 to the special case
f(t) =t*, n >0,

then both parts (a) and (b) yield identities.
Now let f(#) = e?. Then part (a) implies that

tl/

D~ "[ae*] = D~*[e*] - TEEIR
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and using (3.10),

14

abE (v + 1,a) =E,(v,a) — (5.2)

L(v +1)°

a recursion formula for the E, function that may be found in Appen-
dix C. If we apply part (b) to e*, then

v—1

[(v)

DE,(v,a) = aE,(v,a) +

and using (5.2) we see that
DE,(v,a) =E,(v — 1,a), (5.3)

a differentiation formula for E, that also may be found in Appendix C.
Thus we see that an application of Theorem 2 results in a painless
derivation of such formulas as (5.2) and (5.3).

If f(¢) = cos at, then using (3.10), p. 49, we see that parts (a) and
(b) of Theorem 2 yield -

14

—aS,(v +1,a) =C,(v,a) — m

(5.4)

and

v—1

L)’

respectively. Replacing v by v — 1 in (5.4) and substituting in the
equation above yields the differentiation formula

DC/(v,a) = —aS,(v,a) +

DC,(v,a) =C,(v — 1,a). (5.5)

Similarly, we see that if we apply Theorem 2 to f(z) = sin at, we
obtain
aC,(v + 1,a) = S,(v, a) (5.6)
and
DS,(v,a) = S,(v — 1,a). (5.7)

Formulas (5.4), (5.5), (5.6), and (5.7) also may be found in Appen-
dix C.
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Using (5.4), we may write (3.15) in the neat form
D~”sin*at = aS,(v + 1,2a). (5.8)
We may generalize Theorem 2 to derivatives of higher order.

Theorem 3. Let p be a positive integer. Let D?~'f be continuous on
J, and let v > 0. Then:
(a) If D?f is of class C, then
D~"f(1) = D[ D7f(1)] + Q,(t,v)

and
(b) if D?f is continuous on J, then for ¢t > 0

D?[D™*f(t)] = D™[D?f(1)] + Q,(t,» - p),

where

p—1 v+k

Q,(t,v) = ,E‘O I'(v+k+1)

D*£(0). (5.9)

Proof. Replacing v by v + 1 and f by Df in part (a) of Theorem 2
yields

Df(0)
D—u—2 D2 t =D—u—1 DFf(t _ tu+1
[D21(1)] 0] - 56,4 3y
Now replace D~*"'[Df(¢)] in the expression above by part (a) of
Theorem 2 to obtain

f0) ,  Df(O)

rv+1)  T+2)

tv+l

D 2[D*f(1)] = D7f(1) -

Repeated iterations establish part (a).
To prove part (b), differentiate part (b) of Theorem 2 to obtain (for
t>0)

D2 D~*f(1)] = DD~ DF(1)]} + %

Now the term in braces is given by part (b) of Theorem 2 with f

tv—Z
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replaced by Df. Hence

tv—l

0 Df(0
DD f(1)] = D™ [D*()] + %tv—z + ‘r];i))

Repeated iterations establish part (b). H

Since Q,(¢,v) may be expressed as a fractional integral, that is,

Q,(t,v) = D[R, (1)], (5.10)
where
p—1 Dk 0
R, ()= L 1{,( )t", (5.11)
k=0 :

we may write part (a) of Theorem 3 as
D[ f(t) = R,(1)] = D~*~*[D7f(1)]. (5.12)

As a corollary to Theorem 3, we see that if D*f(0) =0, k =
0,1,...,p — 1, then

D~*f(t) = D™ 7?[DPf(1)] (5.13)
and
D?[D~f(t)] = D[ DPf(¢)]. (5.14)

These formulas are generalized in Chapter IV.

Before continuing our theoretical development, let us consider
some consequences of Theorem 3. If we apply part (a) to the function
f(t) = e, then

D~ *[e*] = a?D7*7P[e*] + Q,(t,v), (5.15)
where
p—1 tv+k
Qp(t,v) = Z a*

o F(v+k+1)

Thus from (3.10) we see that (5.15) reduces to the recursion formula

p—1 tu+k

E(v,a) =a’E(v +p,a) + k
(v, a) = a’E(v +p,a) kgoa F(v+k+1)

(5.16)
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[see (C-3.4), p. 315]. On the other hand, part (b) implies that

p = aPE k
DP?E(v,a) =a ,(v,a)+kz=:0a T+ k+1-p)

(5.17)

see (C-3.9), p. 316]. If we replace v by v — p in (5.16) and substitute
in (5.17), we have the elegant formula

DPE (v,a) = E,(v — p,a), p=0,1,... (5.18)

[which also could have been obtained by iterating (5.3)].
Similar arguments, of course, establish that

C,(v,a) = (-1)"?a?C,(v + p, a)
1/2)p-1 tv+2j

+ —1)a?% 5.19
Eo (=1)a F'(v+2j+1) ( )
if p is even, and
C,(v,a) = (=1)M/2P*Dgr+1C (4 4 p + 1, a)
(1/2Xp-1) ) tv+2j
+ —1Ya?% 5.20
Eo (—1)a I'(v+2j+1) ( )
if p is odd, and
S,(v,a) = (=1)"a*S,(v + p, a)
(1/2p—1 , frH2i+l
+ —1) a¥*! 5.21
EO (=1)a T(v + 2j +2) (5-21)
if p is even, and
S,(v,a) = (=1)MP*Pgrrig (4 4 p + 1, 4)
(1/2Xp-1) ' tu+2j+l
+ —1)q¥+! 5.22
EO (=1)a T(v +2j + 2) (5.22)

if p is odd; while

D?C,(v,a) = C,(v — p,a) (5.23)
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and

D?S,(v,a) = S,(v — p,a) (5.24)

forp =0,1,....

In the spirit of Theorems 2 and 3 and (5.13) and (5.14) we shall
prove a theorem that expresses the derivative of a fractional integral
of a function as a fractional integral of that function.

Theorem 4. Let f have a continuous derivative on J. Let p be a
positive integer and let v > p. Then for all ¢t € J,

D?[Df(1)] = D~¢"Pf(t). (5.25)

Proof. By Definition 1,

1 t v—1
D7f(1) = 1y fo (t — &) 7 f(¢) dé

and
DP1[D*f(1)] = D~CP7f(r) (5.26)
since v > p. Differentiation of the expression above leads to
D?[D~*f(1)] = D[DP~1f(1)].
If we replace v by v — p + 1 in part (b) of Theorem 2, and then

substitute this result for the right-hand side of the formula above, we
get

£(0)

D [D1(0)] = D* (DA + 11—

tvP. (5.27)

Now replace v by » — p in part (a) of Theorem 2 and substitute in
(527). =

Suppose that g is a positive integer and let w > g. Then from
Theorem 4,

DD #f(1)] = D=49f(r). (5.28)
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Suppose further that
D—v=g-—Lu. (5.29)
Then we have the interesting corollary that
D?[D™*f(t)] = D[D™*f(1)]. (5.30)

In the next theorem we generalize this result by showing that (5.30)

is true even if p > v and g > w, and also exhibit the relation between
D™Y[D?f(t)] and D[ DIf(1)].

Theorem S. Let p and g be positive integers and let u and v be
positive numbers such that

p—v=q— M. (5.31)

Let f have r continuous derivatives on J where r = max( p, q). Then
for all t € J,

D[ D?f(t)] = D~*[Df(1)]
-1 fv—ptk

+ —_ -
sgn(q p)Es I'v—-p+k+1)

Dkf(0), (5.32)

where s = min(p, g), and for all ¢t € J',
D[ D™ f(t)] = D"[D™"f(1)]. (5.33)
Proof. If p = g, the theorem is trivial. Suppose then that g > p. Let
o =¢q —p > 0. Then from (5.31) we have
w=v+o>0.
From part (a) of Theorem 3

o—1 v+k

DZ[D?A(O] = D D] + B gy DEAO),

Now recall that v + 0 = u and o + p = gq. Thus we have proved
(5.32).
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To prove (5.33) we have from Theorem 4 that
D[ D™*77f(1)] = D™*f(¢). (5:34)
If we differentiate (5.34) p times,
DP*e[D™*77f(t)] = DP[D*f(1)].

But p + 0 = g and v + o = u. Thus we have established (5.33). ®

6. LAPLACE TRANSFORM OF THE FRACTIONAL INTEGRAL

The Laplace transform will prove to be an indispensable tool, espe-
cially in our study of fractional differential equations. We briefly
inaugurate our discussion of this powerful method in the present
section. In future chapters as well as in Appendix C we consider
additional information about, and applications of, this important
technique. -

We recall that a function f(¢) defined on J’ is said to be of
exponential order « if there exist positive constants M and T such
that

e ™| f(t)l =M

for all t > T. If f(z) is of class C and of exponential order «, then

) F(t)e™ dt (6.1)

exists for all s with Re s > a. We shall call (6.1) the Laplace trans-
form of f(t) and write

LUW) = [ F0)e dr.

Sometimes it is convenient to denote the Laplace transform of f
by F,

F(s) =Z{f(1)}.
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We shall also have occasion to write
f(t) ==~ {F(s))
to indicate that f is the (unique) inverse Laplace transform of F.
If f and g are of exponential order, then clearly f(z)g(¢) is of
exponential order. We also assert that if f is continuous on J and Df

is of class C, then if Df is of exponential order, so is f. To demon-
strate this we first note that if € > 0, then

] [ Df ()] dg = £(1) - f(e),

and since f is continuous on J,

f(6) =50 + [ [ Df(¢)] de.

By hypothesis Df is of exponential order. Hence there exists an «
(which we shall assume to be positive) and constants 7 and M such
that

le=*Df(t)| <M (6.2)
for all ¢t > T. Now if we write
£(1) = £(0) + ['e*¢[e=Df(¢)] de

(i.e., we have multiplied the integrand by 1 = e“¢¢~%¢), then

f(6) =5O) + ['Df(¢) de + [ewt[e (&) dg,  ¢>T,

and by (6.2),

[f()] <4+ M [ et dg,
T

where A is a positive constant. But

at

fte“§d§<——.

T a
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Thus for all 1 > T,
| f(2)] < M'e

for some M’'. Hence f(¢) is of exponential order.

If a function of class C has compact support, then the condition
that f be of exponential order is vacuous.

The functions * (u > —1), e*, t*~'e? (u > 0), cos at, and sin at
all are of class C and of exponential order. Some elementary calculus
then shows that

ZltH) = fﬁgggll, u> -1 (6.3a)
3&ﬂ=sia (6.3b)
:?h#—%fqz=-agé%%7, w>0 (6.3¢)
Flcos at} = ?‘"}a_z (6:3d)
Fsin at} = 55— (63¢)

One of the most useful properties of the Laplace transform is
embodied in the convolution theorem (see [7]). The theorem states
that the Laplace transform of the convolution of two functions is the
product of their Laplace transforms. Thus if F(s) and G(s) are the
Laplace transforms of f(¢) and g(t), respectively, then

t
2| ['1 - 66 e = FOIG(). (6.4)
Now if f is of class C, the fractional integral of f of order v is
D*f(t) = L -y o) d >0
O = gy [ -0 (0 de, w0,
which is a convolution integral. Thus if f is of exponential order

1
LD f(1)} = F@j—‘f{f”_l}-‘f{f(f)} (6.5a)

= sTF(s), v>0, (6.5b)
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where F is the Laplace transform of f. We observe that (6.5b) is valid
even if v = 0, but that (6.5a) is indeterminate. However,

gi_%_gﬂ{ ;(;l) } = 1. (6.6)

As examples of (6.5) we see from (6.3) that

I'(u +1)
.CZ{D—Vt“} = —[.L_I_V—-f'—l__’ V>O, n > -1 (6761)
A
1
D7 Ve = ———, >0 6.7b
r
Z{D7vir e} = —(—“—)——E v>0, u>0 (6.7¢)
s’(s — a)
2D ! 0 6.7d
o t; = , > .
(D cosat) = o (672)
a
Z{D7"sin at} = > 0. 6.7
{ Sin a } SV(SZ + a2) ’ v ( e)

We turn now to the problem of finding the Laplace transform of
the fractional integral of the derivative and the Laplace transform of
the derivative of the fractional integral. Suppose then that f is

continuous on J and Df is of class C and of exponential order. Then,
by (6.5),

Z{D7[Df(1)]} = s—*Z(Df (1)}
=s"*[sF(s) — f(0)], v>0, (6.8)

where F(s) is the Laplace transform of f(¢). Since f(¢) is continuous
on J by hypothesis, f(0) exists. Thus we have found the Laplace
transform of the fractional integral of the derivative. This formula is
obviously also valid if » = 0.

Now we consider the problem of finding the Laplace transform of

the derivative of the fractional integral. From part (b) of Theorem 2,
p. 60,

Z(D[D*f(1)]} = Z(D*[Df(1)]) + f (0)3{ It‘<>}

= s~"[sF(s) — f(0)] +s7"f(0)
=s'""F(s), v>0 (6.9)
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_[where we have used (6.8)]. Now we know that if » = 0,
ZDf(t)) = sF(s) — (0). (6.10)

But this is not the same result we would get if we let v = 0 in (6.9).
This “discontinuity” arises from the fact that

tv—l

li = 0, 6.11
50 T(v) (6.11)
and comparing with (6.6) we see that “.#” and “lim” do not com-
mute.

Returning to (6.7) and recalling (3.10), we see that

1 .
_?{E,(v,a)} = m’ v>0
1
Z{C(v,a)} = s 1(s? + a?)’ v>0 (6.12)
AAS,(v,a)} = s”(s2a+ )’ v > 0.

We elaborate on these formulas in Section C-4. Thus we see that with
the aid of the fractional calculus, we have found, with little effort, the
Laplace transforms of some nonelementary functions.

For completeness, from (6.7¢),

_?_1{ - }=r(lu)fot(f—f)””f“'le“fdf.

s*(s — a)”

Thus from (B-4.8), p. 305, we have

D[ 1ew] = I'(x)

= ——- ¢l F(u,w + v at),
T(p + v) Fi(p, n + v;at)

v>0, u>0. (6.13)

[If w is a positive integer, see (3.34), p. 54 and (C-4.5), p. 323.]
Finally, we wish to mention a phenomenon that some readers might
not have noticed. Although this phenomenon is prevalent in all of
mathematics, we wish to emphasize it in our dealings with the Laplace
transform. Depending on the method used, it is sometimes possible to
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weaken a set of hypotheses and still arrive at the same conclusion. For
example, if

1
F(S) = —S—
and
1
G(s) ==

then G(s) is meaningful only if v > 0, but F(s)G(s) is meaningful if
v > —1. Thus if we find the inverse transform of F(s)G(s) directly,
namely

P ——— 619

we need require only the weaker hypothesis, v > —1. But if we use
the convolution approach, namely,

o,
L

then since the integral is meaningful only for v > 0, we have proved
our result only with the stronger hypothesis » > 0 (even though we
know that the result is valid for v > —1).

As another more subtle example, let

x(t) =1

and as our problem let it be required to find the inverse Laplace
transform of

s2X (s
Y(s) = s2 -: 1)
Now
X(s) = L) (6.16)
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_provided that A > 0 and

Y(s) = Aazr()z‘)
s+ 1)
is meaningful if A > 0. Thus
y(t) =T(A)S,(r = 2,1), A>0. (6.17)
On the other hand, if we write
s*X(s) = Z{D*x(t)} + sx(0) + Dx(0), (6.18)

~ then Y(s) may be expressed as

Z{D*x(t)}  sx(0) + Dx(0)
s+ 1 x2+1

Y(s) =
But from (6.16),
I'(A
s?X(s) = —s*('z

b

which is meaningful only for A > 2. If this is the case, x(0) = 0 = Dx(0)
and by the convolution theorem

y(t) = [sin(t = £)Dx(£) d
= (A= DA = 2) [ sin(r — £)£* 7 dg
=T(A)S,(A —2,1)

[see (C-3.20), p. 320]. Thus we have proved our result only for A > 2,
while we know from (6.17) that it is valid for A > 0.

7. LEIBNIZ’S FORMULA FOR FRACTIONAL INTEGRALS

A Leibniz-type formula expresses the result of operating on the
product of two functions as a sum of products of operations per-
formed on each function. The classical Leibniz rule or formula of
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elementary calculus is
prlfwa] = ¥ (¢ )[Ds@l 4wl 0

where f and g are assumed to be n-fold differentiable on some
interval. Now we wish to extend (7.1) to fractional operators.

We have seen in Section III-3 that if f is of class C and g(z) = ¢?,
where p is a positive integer, then the fractional integral of the
product fg of order » > 0 may be written as

“L0s0] = X (7)ol 02)

[see (3.33), p. 53]. The resemblance of this formula to (7.1) is obvious.
The immediate problem we wish to address is the extension of (7.2) to
the case where g is not just a simple polynomial. Later, in Chapter
IV, we extend these formulas to fractional derivatives.

Suppose then that f is continuous on [0, X] and that g is analytic
at a for all a € [0, X]. Then fg is certainly of class C, and for v > 0,
the fractional integral

D[ f(t)g(1)] = F( ) / (t— &) '[f(£)e(e)lde, 0<i=X
(7.3)

exists. We may write

()

g(f)—Z( 1) (1 — &)

()

=g(1) + Z( 1) (=& (7.4)

The series (7.4) converges for all ¢ in an interval that properly
contains [0, ¢], and hence uniformly on [0, ¢].
Now substitute (7.4) into (7.3) to obtain

| v
D f(0)&(0] = g(IDTF(1) + 15 [ (1 = €)'F(8)
g( )

xé( 1) (t—&)tde.  (75)
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Since f is continuous on [0, X] and v > 0,

(t —&)'f(€)

is bounded on [0, ¢]. Hence we may interchange the order of integra-
tion and summation in (7.5) to obtain

F(V + k)

D1 f(1)g(1)] = Toy [P sOl[D™ 4 (0)

I
L[ )pteollool a9

[see (B-2.6), p. 298].
Thus we have shown:

Theorem 6. Let f be continuous on [0, X], and let g be analytic at a
forall a € [0, X] Thenfor v >0and 0 <t < X,

D lfws] = T () IDtello 0] 0)

We call (7.7) the Leibniz formula for fractional integrals. Equation
(7.2) is a special case.

Note: The only reason we assumed g analytic for all points a in
[0, X'] was to guarantee the uniform convergence of (7.4) for ¢ € [0, ¢].

As our first application of the Leibniz rule, let f(¢) =t*, A > 0,
and let g(¢) = ‘. Then from Theorem 6

lan ® T+ k) '(x +1) _—
b ["’]‘,EO(‘ k'F()[ ]F(A+V+k+l)
I'ia +1
=F()\(+-:+)1) A+l”F(V A+v+1;—1). (7.8)

Using this result we may deduce a useful identity involving the
confluent hypergeometric functions [see (7.11)]. For, from the defini-
tion of the fractional integral,

—v[ At 1 ¢ v—1,
D ”[fe]=-r(—y)-f0(t—§) get dt

F(A+1) Aty B 1,A 1 7.9
= (At + +v+1:t .
C(A +v+1) i ’ g 1) (7.9)
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by (6.13) [see also (3.34), p. 54]. Comparing (7.8) and (7.9) establishes
the identity

e Filv,h +v+1;,—t) = F(A+1,A+v+1;t). (7.10)

Or if we let

a=A+1
c=A+v+1,

we have, in more conventional notation,
Fia,c;t) =e" Fi(c —a,c;—t) (7.11)

[see (B-4.10), p. 305].

As a second example, let f(¢) =t*, A > 0,and let g(¢) = (1 — )™~
Let X be a fixed positive number less than 1. Then (1 —¢) ¢ is
analytic at every point of [0, X'], and by Theorem 6,

] PLYZ P Nk Z _ kw e e o
D [t (1—-1) ] kgo( 1) KT () [D (1 —1t) ][D £]
for 0 <t < X. But

k o TD(a+k) s
D(l—t) =_I.:‘_(_z¥__)__(1_t)
and
—y—k A (ar +1) ek
D t=l‘()\+u+k+1)
Thus
—a '(x +1 .
D1 -1)""] = r—((v_)ri(?.%’m(l _ 1)
> I'(v + k)'(a + k) t ok
ngor()\+v+k+1)k!(t_1)
__fArD L. ca
- T(A +v-!—1)-t 1-1)

t
X, Flv,a,A +v+1;t——1—). (7.12)
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On the other hand, since

— 1 2 I(atk) |
(1—1) =1F°(a;t)=l‘(a)k§0 (k! )t

for |t] < 1 [see (B-4.13), p. 305],

D[tM1-1)""] = : D—V[ y et

['(a) i k!
B 1 t v—1 bl F(a +k) A
B F(V)F(a)fo(t — ) ,EO TR I
— F(A + 1) A+v F 1 .
_F()\+V+1)t JFi(A + 1 a, A + v+ 15¢).

(7.13)

Comparing (7.12) and (7.13) leads to
w t
(1—-1t) LF; V,a,)\+v+l;t——:—1— =, F (A +1,a,A +v +1;¢).

Or in more conventional notation with

a=A+1
b=a«a
c=A+v+1,

we have established the identity

t
(1-1t)"°Flc—a,b,c; , =, F(a,b,c;t) (7.14)

-1

between hypergeometric functions [see (B-4.6), p. 304].

Another interesting result that we may establish using the Leibniz
rule is the identity

I'(c)I'(c —a —b)
I'(c —a)l'(c —b)

,Fi(a,b,c;1) = (7.15)

[sometimes called Laurent’s formula; see (B-4.4), p. 304].
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To prove (7.15) we start with the trivial identity
(AT =M >0, (7.16)
Now for » > 0and A + n > —1,

F'(A+pup +1)

D—Vt/\+y. —
F'(A+p+v+1)

pAraty, (7.17)

We shall show that if A, u > 0, we may apply Leibniz’s formula to the
product of f(t) =t* and g(¢) = ¢*. This result may then be com-
pared with (7.17) to establish (7.15).

We begin by expanding g(&) in powers of (¢ — ¢). By the binomial
theorem

g(&)=¢*=[t+(£-1)]"

= l‘“’(l + -f_—_l‘_)
t

= 1+ i (’;)(f’:—_—t)k (7.18)

k=0 t

Considered as a power series in (¢ — t) /t, the radius of convergence
is 1. Using Raabe’s test we see that the series converges absolutely for

£—1
T = +1.
t

Furthermore, it converges to £*. Since

k
—1
) =)
k t =\ k
for all (¢ —t)/t in [—1,1], the Weierstrass M-test implies that the
convergence is uniform in the closed interval [—1,1]. Thus (7.18)

converges uniformly for ¢ € [0, ¢].
It therefore follows (see the note after Theorem 6, p. 75) that

] = T (-0 el [D ] (a9
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is valid for v > 0, ¢ > 0, A, u = 0. Thus

I(p+1) 2 T(=A2+k)I(v+k)1
N(-=MI'w) , = I'p+v+k+1) k!

I(pn +1)
T(w+v+1)°

D—V[t/\ty.] — t/\+y.+v

— t/\+y.+v

F(—Av,u+v+1;1).

If we equate this result to (7.17), we obtain

I'(x +p +1 I'lp +1
( F ) = (n ) CSF(=A,v,u + v+ 1;1).
F'(A+upu+v+1) I'(ptv+1)

(7.20)
In more conventional notation let a = —A, b=v, c=u +v + 1.

Then (7.20) becomes
I'(c)I'(c —a —b) Flab el 1
e —a)l(c—py 2Hleb.cl) (7.21)

for

a <0, c—1=2b>0. (7.22)

Now (7.21) is the same as (7.15). And we know that this formula is
valid for

c—a—-b>0 (7.23)

with ¢ unequal to a nonpositive integer. Thus we have established
(7.21) only under the more restrictive conditions of (7.22). But we have
encountered this phenomenon before (see pp. 71-73).



7

Hankel Transforms and Their Applications

“In most sciences one generation tears down what another has
built, and what one has established, another undoes. In mathemat-
ics alone each generation adds a new storey to the old structure.”

Hermann Hankel

“I have always regarded mathematics as an object of amusement
rather than of ambition, and I can assure you that I enjoy the
works of others much more than my own.”

Joseph-Louis Lagrange

7.1 Introduction

Hermann Hankel (1839-1873), a German mathematician, is remembered for
his numerous contributions to mathematical analysis including the Hankel
transformation, which occurs in the study of functions which depend only on
the distance from the origin. He also studied functions, now named Hankel
functions or Bessel functions of the third kind. The Hankel transform involv-
ing Bessel functions as the kernel arises naturally in axisymmetric problems
formulated in cylindrical polar coordinates. This chapter deals with the defini-
tion and basic operational properties of the Hankel transform. A large number
of axisymmetric problems in cylindrical polar coordinates are solved with the
aid of the Hankel transform. The use of the joint Laplace and Hankel trans-
forms is illustrated by several examples of applications to partial differential
equations.

343
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7.2 The Hankel Transform and Examples

We introduce the definition of the Hankel transform from the two-dimensional
Fourier transform and its inverse given by

F ) =FED=5- [ [ eol-ils 0}y dedy. (7:21)
3‘"1{F(k,l)}:f(a:,y):%/ /exp{i(n-r)}F(k,l)dkdl, (7.2.2)

—00 —O0©

where r = (z,y) and k = (k,1). Introducing polar coordinates (x,y)=r(cos 0,
sin®@) and (k,!) = k(cos ¢,sin ¢), we find k- r = k1 cos(6 — ¢) and then

0o 2w
F(k,0)= % /7“ dr/exp[—mr cos(0 — @)]f(r,0)db. (7.2.3)
0 0

We next assume f(r,0) =exp(ind) f(r), which is not a very severe restric-
tion, and make a change of variable § — ¢ =a — J to reduce (7.2.3) to the
form

1

F(k,¢) = Dy rf(r)dr
0

27m+¢o
X / exp {m ((b - g) +i(na — krsina)| da, (7.24)
b0

where ¢g = (g - (b).
Using the integral representation of the Bessel function of order n

27+ ¢o
In(kr) = % / expli(na — krsina)|da (7.2.5)
%o

integral (7.2.4) becomes

/rJn(/ir)f(r)dr (7.2.6)
0
fa

(k), (7.2.7)
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where fn(li) is called the Hankel transform of f(r) and is defined formally by

A {f (1)} = ful / dr. (7.2.8)
0

Similarly, in terms of the polar variables with the assumption f(z,y)=
f(r,0)=e™m f(r) with (7.2.7), the inverse Fourier transform (7.2.2) becomes

el f(r) = % 7& dr 7exp [ikr cos(0 — @) F(k, ¢)do
0 0
= 2i 7 /Texp [m (¢ — 5) + ikr cos(f — ¢)] do,
0

which is, by the change of variables § — ¢ = — (a + g) and 0y =— (9 + g),

27+0¢
= —//ifn / explin(f + o) — ikr sin ada

= me/nJ (k7) fu(K)dr by (7.2.5). (7.2.9)

0

Thus, the inverse Hankel transform is defined by

Kodn (57) fn (1) dEs. (7.2.10)

3%

L
r
T
—
=
Il
0\8

Instead of fn(/i), we often simply write f (k) for the Hankel transform speci-
fying the order. Integrals (7.2.8) and (7.2.10) exist for certain large classes of
functions, which usually occur in physical applications.

Alternatively, the famous Hankel integral formula (Watson, 1944, p. 453)

f(r) = / b T () / P50 f (p)dp, (7.2.11)
0 0

can be used to define the Hankel transform (7.2.8) and its inverse (7.2.10).

In particular, the Hankel transforms of the zero order (n =0) and of order
one (n=1) are often useful for the solution of problems involving Laplace’s
equation in an axisymmetric cylindrical geometry.

Example 7.2.1 Obtain the zero-order Hankel transforms of



346 INTEGRAL TRANSFORMS and THEIR APPLICATIONS

(a) 7" exp(-ar). i 20, (€) Hla 1)
where H(r) is the Heaviside unit step function.
We have
(a) f(k)=2% {1 exp(—ar)} = 7exp(—a7") Jo(kr)dr = _
: / VT &
(b) f(x)

(¢) flr) = Ho{H(a 1)} = / rJo(sr)dr = — / pJo(p)dp
0 0
1

Example 7.2.2 Find the first-order Hankel transforms of

(a) f(r) =€, (b) fr)=r e, ©) fy Smar

r
We can write

oo

(a) f(k)=4{e "} = b/ re” “"Ji(kr)dr = m.
(b) f(r)=4 { “;M } = 76‘"J1(m“)dr = % 1—a(k®+a?)"2].
0
(c) f(k)=4 { sir;ar } = 0705111 ar Jy(kr)dr= %.
I

Example 7.2.3 Find the nth (n > —1) order Hankel transforms of

(a) f(r)=r"H(a—r), (b) f(r)=r"exp(—ar?).
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Here we have, for n > —1,
~ ¥ anJrl
(a) f(k) = 56, [r"H(a — )] :/r”“Jn(/ﬁr)dr = Jnt1(ak).
0
(b) f(r) = H, [r" exp(—ar?)] = /T"HJn(m“) exp(—ar?)dr
0
_ K" H2
= 7(20,)”4’1 exp —E .
[
7.3 Operational Properties of the Hankel Transform
THEOREM 7.3.1 (Scaling).
If A, {f(r)} = fu(x), then
1 /K
Halflar)}=—fn (E) a>0. (7.3.1)
PROOF  We have, by definition,
I f(ar)} = /rJn(m')f(ar)dr
0
1 Vi K 1 - /K
0
i
TI-INEOREM 7.3.2 (Parseval’s Relation).
If f(r) =2{f(r)} and g(r) = A {g(r)}, then
/rf(r)g(r)dT://if(/i)f](/i)d/i. (7.3.2)

0 0
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PROOF We proceed formally to obtain

/Ooﬁf(ﬁ)é(ﬁ) :/"o f(r)d /OorJn(W)g(T)dr,
0 0 0

which is, interchanging the order of integration,

:7 (r) rfmn(ﬁ ) f(k)dr
OOO 0
:/rg(r)f(r)dr

THEOREM 7.3.3 (Hankel Transforms of Derivatives).

If fo.(k) =24,{f(r)}, then
H{f' ()} = 5 [(n— Dfngi(8) = (4D fua(s)|, n>1, (7.3.3)
HO{f ()} = —F»fo( ); (7.3.4)

provided [rf(r)] vanishes as r — 0 and r — co.

PROOF  We have, by definition,

o0

A f ()} = / () £ (r)dr

0

which is, integrating by parts,
=[rf(r) /f Kr)]dr. (7.3.5)
0

We now use the properties of the Bessel function
d
o [rdn (k)] = Jn(kr) + 16J), (k1) = Jp (k1) + rEJp—1 (k1) — Ny (K1)
= (1 —n)Jy(kr) + reJp_1(kT). (7.3.6)

In view of the given condition, the first term of (7.3.5) vanishes as r —0
and r — 0o, and the derivative within the integral in (7.3.5) can be replaced



Hankel Transforms and Their Applications 349

by (7.3.6) so that (7.3.5) becomes

' (N}=Mn-1 /f (kr)dr — K fn_1(k). (7.3.7)
0
We next use the standard recurrence relation for the Bessel function
Tn(i7) = % [Jne1 (k) + Jng (57)]. (7.3.8)

Thus, (7.3.7) can be rewritten as

AF )] = R Far( (” - 1) { (P {Jur (1) + T () Y

= —kfn_1( (n_l) Fr1(K) + fagr(k )}
= () [<n =) =+ 1) fcr ).

In particular, when n =1, (7.3.4) follows immediately.
Similarly, repeated applications of (7.3.3) lead to the following result

A" (r)} = 2—[( — DA {f' ()} = (n+ 1)t 1 {f'(r)}]

= [() =2 (=) e

+ (” — 1) fn+2(n)] . (7.3.9)

n+1

THEOREM 7.3.4 It #,{f(r)} = fu(k), then

a{(v-2) s} = L () - g =t

(7.3.10)
provided both rf/(r) and rf(r) vanish as r — 0 and r — co.

PROOF  We have, by definition (7.2.8),

L () ) - Z st [ ()| o
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which is, invoking integration by parts,
_[(,df >, 7n2
= [(rdr> Jn(m")}0 /i/rdr J, (kr)dr - [rdn (k7)) f (r)dr,
0 0

which is, by replacing the first term with zero because of the given assumption,
and by invoking integration by parts again,

==l f )T+ [ Sl D] e = [ Sl ey
0 0

We use the given assumptions and Bessel’s differential equation,

%[W‘ T (k)] 47 (nz - :L—z) T (K1) =0, (7.3.11)
to obtain
Hn VQ—”—E flr)p=- [ Ks2—n—§ v (r)Jp (kr)dr
((o-2) 0} ] -3
- 72—5[#(@] T (k) dr

- /TJn(W)f(T)dT = K2 A [f (1)) = =K ful().
0

This proves the theorem.
In particular, when n =0 and n =1, we obtain

A {%dii (r%)} = —k%fo(k), (7.3.12)

4 {%dii Q«%) - r—lzf(r)} — k2 (k). (7.3.13)

Results (7.3.10), (7.3.12), and (7.3.13) are widely used for finding solutions
of partial differential equations in axisymmetric cylindrical configurations. We
illustrate this point by considering several examples of applications.

7.4 Applications of Hankel Transforms to Partial
Differential Equations

The Hankel transforms are extremely useful in solving a variety of partial
differential equations in cylindrical polar coordinates. The following examples
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illustrate applications of the Hankel transforms. The examples given here are
only representative of a whole variety of physical problems that can be solved
in a similar way.

Example 7.4.1 (Free Vibration of a Large Circular Membrane).
Obtain the solution of the free vibration of a large circular elastic membrane
governed by the initial value problem

0%u  10u 0%u

2 —— = —
‘ (3r2+r37’) ot?’ 0<r<oo, t>0, (7.4.1)
u(r,0)=f(r), wu(r,0)=g(r), for 0<r<oo, (7.4.2ab)

where ¢? = (T/p) = constant, T is the tension in the membrane, and p is the
surface density of the membrane.
Application of the zero-order Hankel transform with respect to r

o0

ﬂ(fs:,t):/rJo(/@r)u(r, t)dr, (7.4.3)
0
o (7.4.1)—(7.4.2ab) gives
d*a _
=+ k=0, (7.4.4)
a(k,0)=f(r),  (k,0)=g(k). (7.4.5ab)

The general solution of this transformed system is
i(k,t) = f(k) cos(ckt) + (ck) ™t (k) sin(ckt). (7.4.6)

The inverse Hankel transform leads to the solution

oo

u(r,t) = //if'(/i) cos(ckt)Jo(kr)dK

1 o0
+E/ ) sin(ckt) Jo (kr)dk. (7.4.7)
0
In particular, we consider
u(r,0) = f(r) = Aa(r® +a®)"%, w(r,0)=g(r) =0, (7.4.8ab)
so that g(k) =0 and
r r 2 2\— 1 Aa —ak
f(k)=Aa | r(a® +71°)" 2 Jo(kr)dr = —e™ %, by Example 7.2.1(a).
K

0
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Thus, the formal solution (7.4.7) becomes

o0 o0

u(r,t) = Aa / e~ " Jo(kr) cos(ckt)dr = Aa Re/exp[—/i(a +ict)]Jo(kr)dk
0 0
= AaRe{r* + (a+ ict)2}_% : by Example 7.2.1(a). (7.4.9)

Example 7.4.2 (Steady Temperature Distribution in a Semi-Infinite Solid
with a Steady Heat Source).

Find the solution of the Laplace equation for the steady temperature distri-
bution u(r, z) with a steady and symmetric heat source Qoq(r):

1
urr+;ur+uzz - —QOQ(T)a 0<7"<OO, O<Z<OO7 (7410)
u(r,0) =0, 0<r<oo, (7.4.11)

where Qg is a constant. This boundary condition represents zero temperature
at the boundary z =0.

Application of the zero-order Hankel transform to (7.4.10) and (7.4.11) gives

d*a
o~ Ka==Qod(r), (x,0)=0.

The bounded general solution of this system is
(k,z) = Aexp(—kz) + %d(n),

where A is a constant to be determined from the transformed boundary con-
dition. In this case

A==2i(n)
Thus, the formal solution is
i, ) = 0 qz(“) (1—e "), (7.4.12)
K

The inverse Hankel transform yields the exact integral solution

oo

u(r, z) = Qo/(j( )(1—6 ) Jo(kr)ds. (7.4.13)

0
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Example 7.4.3 (Azisymmetric Diffusion Equation).
Find the solution of the axisymmetric diffusion equation

1
U =K <uM + —ur) , 0<r<oo, t>0, (7.4.14)
r

where k(> 0) is a diffusivity constant and
u(r,0)= f(r), for 0<r<oo. (7.4.15)
We apply the zero-order Hankel transform defined by (7.4.3) to obtain

di _
d—“ Y k2ka=0,  a(k,0)= f(k),
where k is the Hankel transform variable. The solution of this transformed
system is ~

a(k,t) = f(k) exp(—rk?t). (7.4.16)

Application of the inverse Hankel transform gives

/ k)Jo(kr)e " tdk = / /ZJO (kD) F)dl| e "%t Jo(kr)dk
0
which is, interchanging the order of integration,
:/lf(l)dl/kJo(kl)JO(kr) exp(—rk*t)dk. (7.4.17)
0 0

Using a standard table of integrals involving Bessel functions, we state

[ ittt = e [ o (L
/kJo(kl)Jo(kr)eXp( k K:t)dk—QmL exp e Iy 57 ) (7.4.18)

where Ip(x) is the modified Bessel function and Iy(0) = 1. In particular, when
1=0,Jp(0) =1 and integral (7.4.18) becomes

[ ity — e (1
/kJo(kr) exp(—k“kt)dk = 57 P\~ ) (7.4.19)

We next use (7.4.18) to rewrite (7.4.17) as

u(rt) =5 t/lf() (;lt> exp [—%] dl. (7.4.20)
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We now assume f(r) to represent a heat source concentrated in a circle of
radius @ and allow @ — 0 so that the heat source is concentrated at » =0 and

a

lim Zﬂ/rf(r)dr =1.

a—0
0

Or, equivalently,
1 4(r)
f(r)= S

where §(r) is the Dirac delta function.
Thus, the final solution due to the concentrated heat source at r =0 is

17 rl r2 412
u(r,t) = - o(1) Lo <_2mj> exp {— e } dl
0

L. - (7.4.21)
=——exp|——]. 4.
4kt P 4kt

Example 7.4.4 (Azisymmetric Acoustic Radiation Problem).
Obtain the solution of the wave equation

1

2 <urr + —u, + uzz> =uy, 0<r<oo, 2z>0, t>0, (7.4.22)
r

u, = F(r,t) on z=0, (7.4.23)

where F'(r,t) is a given function and c¢ is a constant. We also assume that the
solution is bounded and behaves as outgoing spherical waves.
We seek a steady-state solution for the acoustic radiation potential u =
etp(r, z) with F(r,t) =e™“! f(r), so that ¢ satisfies the Helmholtz equation
1 w?
¢TT+;¢T+¢22+<C_2>¢:O, 0<r<oo, z>0, (7.4.24)

with the boundary condition
.= f(r) on z=0, (7.4.25)

where f(r) is a given function of r.
Application of the Hankel transform 4 {4 (r, z)} = o(k, z) to (7.4.24)(7.4.25)
gives
(lgzz = Kzéa z >0,

g)z:f(k)a OHZZO,
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where

The solution of this differential system is
- 1 -
d)(ka Z) = _;f(k) exp(—mz), (7426)

where k is real and positive for k > w/c, and purely imaginary for k <w/ec.
The inverse Hankel transform yields the formal solution

o0

B(r, 2) = — / % F (k) Jo(kr) exp(—rz)dk. (7.4.27)

0

Since the exact evaluation of this integral is difficult for an arbitrary f (k), we
choose a simple form of f(r) as

f(r)=AH(a—r), (7.4.28)

where A is a constant, and hence, f(k) = 42 7, (ak).
Thus, the solution (7.4.27) takes the form

o(r,z) = —Aa/ %Jl (ak)Jo(kr) exp(—rz)dk. (7.4.29)
0

For an asymptotic evaluation of this integral, it is convenient to express
(7.4.29) in terms of R which is the distance from the z-axis so that R? =r? + 22
and z= Rcos#. Using the asymptotic result for the Bessel function

9\ 2
Jo(kr) ~ <%> cos (kr - g) as T — 00, (7.4.30)

where = Rsinf. Consequently, (7.4.29) combined with u=exp(iwt)¢ be-
comes

Aay/2et 7 1
\/ﬂ'RSiH@O kVk

~

J1(ak) cos (kR sinf — %) exp(—kz)dk.

This integral can be evaluated asymptotically for R — oo using the stationary
phase approximation formula to obtain the final result

_ Aac
wRsin 6

Hakn)esp i (w2, (7.431)

~

Cc
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where k1 =w/(csin @) is the stationary point. Physically, this solution repre-
sents outgoing spherical waves with constant velocity ¢ and decaying ampli-
tude as R — 00.

Example 7.4.5 (Azisymmetric Biharmonic Equation).
We solve the axisymmetric boundary value problem

Viu(r,z) =0, 0<r<oo, 2z>0, (7.4.32)

with the boundary data

u(r,0) = f(r), 0<r<oo, (7.4.33)
% =0 on z=0, 0<r<oo, (7.4.34)
u(r,z) =0 as r— 00, (7.4.35)

where the axisymmetric biharmonic operator is

9?2 19 0? 9% 10 0?
i_wony_ (9 19 9 \N\o Lo O
V=V (V)_<82+r8r+322)<8r2+r37“+8z2)' (7.4.36)

The use of the Hankel transform 5% {u(r, 2)} = (k, z) to this problem gives

2\
(@ —k > u(k,z) =0, 2z>0, (7.4.37)
- 5 du
u(k,0) = f(k), = 0 on z=0. (7.4.38)
z

The bounded solution of (7.4.37) is
U(k,z)=(A+ zB)exp(—kz), (7.4.39)

where A and B are integrating constants to be determined by (7.4.38) as
A= f(k) and B=kf(k). Thus, solution (7.4.39) becomes

a(k, z) = (14 kz) f(k) exp(—kz). (7.4.40)

The inverse Hankel transform gives the formal solution

/k (14 k2) f(k)Jo(kr) exp(—kz)dk. (7.4.41)
0

Example 7.4.6 (The Azisymmetric Cauchy-Poisson Water Wave Problem).
We consider the initial value problem for an inviscid water of finite depth h
with a free horizontal surface at z=0, and the z-axis positive upward. We
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assume that the liquid has constant density p with no surface tension. The
surface waves are generated in water, which is initially at rest for ¢ <0 by the
prescribed free surface elevation. In cylindrical polar coordinates (r, 6, z), the
axisymmetric water wave equations for the velocity potential ¢(r, z,t) and the
free surface elevation 7(r,t) are

1
v2¢=¢w+;¢r+¢u=o, 0<r<oo, —h<z<0, t>0, (7.4.42)

d)z — = 0
onz=0, t>0, (7.4.43ab)
ot +9gn=0
¢.=0 onz=—h, t>0. (7.4.44)
The initial conditions are
¢(r,0,0)=0 and n(r,0)=ne(r), for 0 <r < oo, (7.4.45)

where g is the acceleration due to gravity and 7o(r) is the given free surface
elevation.
We apply the joint Laplace and the zero-order Hankel transform defined by

oo o0

g(k,z,s):/e_Stdt/rJo(kr)qb(r,z,t)dr, (7.4.46)

0 0

to (7.4.42)—(7.4.44) so that these equations reduce to

do ~ _
— —sn=—no(k
7, — 51=—1o(k) on z=0.
s;+gﬁ=0
zzzo on z=—nh,

where 7jo(k) is the Hankel transform of 7 (r) of order zero.
The solutions of this system are
gTo(k) coshk(z+h)

B(k - 7.4.47
9(k, 2, 5) (s2+w?) coshkh ( )

7(k,s) = % (7.4.48)

where
w? = gk tanh(kh), (7.4.49)
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is the famous dispersion relation between frequency w and wavenumber & for
water waves in a liquid of depth A. Physically, this dispersion relation describes
the interaction between the inertial and gravitational forces.

Application of the inverse transforms gives the integral solutions

B T _ sinwt\ coshk(z + h)
o(r,z,t) = g/kJo(kr)no(k)< - ) osh Ik dk, (7.4.50)
0
n(r,t) = / FeJo (er)iio (k) cos wt d. (7.4.51)
0

These wave integrals represent exact solutions for ¢ and 7 at any r and ¢, but
the physical features of the wave motions cannot be described by them. In
general, the exact evaluation of the integrals is almost a formidable task. In
order to resolve this difficulty, it is necessary and useful to resort to asymptotic
methods. It will be sufficient for the determination of the basic features of the
wave motions to evaluate (7.4.50) or (7.4.51) asymptotically for a large time
and distance with (r/t) held fixed. We now replace Jy(kr) by its asymptotic
formula (7.4.30) for kr — oo, so that (7.4.51) gives

2 3 7 _ 0
n(r,t) ~ (;) /\/Eno(k) cos (kr — Z) coswt dk
0

— (27r) "% Re /OO\/Eﬁo(k) exp i (wt—kr+ T )| dh. (7.4.52)
0

Application of the stationary phase method to (7.4.52) yields the solution

b ]F
n(r,t) ~ {W} o (k1) cos[tw(ky) — kq1r], (7.4.53)

where the stationary point k1 = (gt2 / 47“2) is the root of the equation

W'(k)= T (7.4.54)
For sufficiently deep water, kh — oo, the dispersion relation becomes
w? = gk. (7.4.55)

The solution of the axisymmetric Cauchy-Poisson problem is based on a pre-
scribed initial displacement of unit volume that is concentrated at the origin,

which means that ny(r) = (a/27r)d(r) so that 7o(k) = 21. Thus, the asymp-
™
totic solution is obtained from (7.4.53) in the form
agt? < gt?
s

rt)~———cos | Z— |, gt?>>4r. 7.4.56
)~ o (%) g (7.4.50)
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It is noted that solution (7.4.53) is no longer valid when w” (k1) =0. This
case can be handled by a modification of the asymptotic evaluation (see Deb-
nath, 1994, p. 91).

A wide variety of other physical problems solved by the Hankel transform,
and/or by the joint Hankel and Laplace transform are given in books by
Sneddon (1951, 1972) and by Debnath (1994), and in research papers by
Debnath (1969, 1983, 1989), Mohanti (1979), and Debnath and Rollins (1992)
listed in the Bibliography.

7.5 Exercises

1. Show that
2

(2) Ao (a® —rQ)H(a—r)} Tilsa) — 25 Jo(ar),

3
(0) Hfrmeory = -2 2"“( ) s e,
© 0 {210} =kt (SO} + Ko 1O

2. (a) Show that the solution of the boundary value problem

1
Upr + —Ur + Uy, =0, 0<r<oo, 0<z<o0,
T

1
u(r,z)=————= onz=0, 0<r<oo,
(r.2) Va2 +r?
is -
1
u(r, 2) 2/6_“(”“)570(&7“)51/@: —_—
(z+a)?+7r?

0

(b) Obtain the solution of the equation in 2(a) with u(r,0)= f(r) =
H(a—r), 0<r<oo.

3. (a) The axisymmetric initial value problem is governed by
1
U = K (uw + ;ur> +0(t)f(r), 0<r<oo, t>0,
u(r,0) =0 for 0<r<oo.

Show that the formal solution of this problem is

o0

u(r,t) = / kJo(kr) f (k) exp(—E2kt)dk.

0
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Q

ma?

(b) For the special case when f(r)= (

solution is

) H(a — ), show that the

u(r,t) = (%) ZJO(kr)Jl (ak) exp(—k2xt)dk.

4. If f(r) = A(a® +r?)~ 2 where A is a constant, show that the solution of
the biharmonic equation described in Example 7.4.5 is
{r’+(z+a)(2z+a)}
(12 + (2 + a)?]3/2

u(r,z)=A4A

5. Show that the solution of the boundary value problem

1
Uppr + —Upr + U, =0, 0<r<oo, 2>0,
r
u(r,0) =ug for 0<r<a, up is a constant,
u(r,z) —0 as z — 09,
is -
u(r,z) =augp / Ji(ak)Jo(kr) exp(—kz)dk.
0
Find the solution of the problem when wug is replaced by an arbitrary
function f(r), and a by infinity.

6. Solve the axisymmetric biharmonic equation for the small-amplitude
free vibration of a thin elastic disk

or2  ror
u(r,0)=f(r), wu(r,0)=0 for 0<r < oo,

2 1 2
b2<6—+_2) u+ue=0, 0<r<oo, t>0,

where b% = <%> is the ratio of the flexural rigidity of the disk and its
o

mass 2ho per unit area.

7. Show that the zero-order Hankel transform solution of the axisymmetric
Laplace equation

Upp + —Up + U, =0, 0<r<oo, —o0<z<00,
r

with the boundary data

lim(r?u) =0, lim(27r)u, =—f(2), —o00<z< o0,
r—0 t—0
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is -
- 1
(k)= [ exp{=klz = IO
drk

Hence, show that

8. Solve the nonhomogeneous diffusion problem

1
U=k (urr—k ;ur> +Q(rt), 0<r<oo, t>0,
u(r,0) = f(r) for 0 <r < oo,
where k is a constant.

9. Solve the problem of the electrified unit disk in the x—y plane with
center at the origin. The electric potential u(r, z) is axisymmetric and
satisfies the boundary value problem

1
Uppr + —Ur + U, =0, 0<r<oo, 0<z<o0,
T

u(r,0)=ugp, 0<r<a,
ou_
0z

u(r,z) =0 as z— oo forall r,

0, onz=0 fora<r<oo,

where ug is constant. Show that the solution is

oo

u(r, ) = (26;“0> / To(kr) (Smk“k ) e~F= .
0

10. Solve the axisymmetric surface wave problem in deep water due to an
oscillatory surface pressure. The governing equations are

1
V2¢=¢rr+;¢r+¢u=0, 0<r<oco, —00<z<0,

P
b+ gn=— > p(r) exp(iwt)

¢z_nt:O

on z=0, t>0,

o(r,2,0)=0=mn(r,0), for 0<r<oco, —o0<z<0.
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11.

12.

13.

14.
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Solve the Neumann problem for the Laplace equation

1
Upp + —Ur + Uy, =0, 0<r<oo, 0<z<o00
r
1
2(r0)=——=H(a-7), 0<r<
u(r,0) —3 (a—r) r <00
u(r,z) =0 as z—oo for 0<r<oo.
Show that
. 1, o1
ilg})u(r,z)—%(r +2z°)7 2.

Solve the Cauchy problem for the wave equation in a dissipating medium

1
utt+2/<aut:c2 <urr+—ur) , O<r<oo, t>0,
T
u(r,0)=f(r), w(r,0)=g(r) for 0<r <oo,
where k is a constant.

Use the joint Laplace and Hankel transform to solve the initial-boundary
value problem

1
c2<urr+—ur+uzz>:utt, O<r<oo, 0<z<oo, t>0,
r

uy(r,0,t)=H(a—7)H(t), 0<r<oo, t>0,
u(r,z,t) =0 asr— oo and u(r,z,t) >0 as z— oo,
u(r, z,0)=0=1wu(r, 2,0),

and show that

ug(r, z,t) = —ac H (t - %) 7J1 (ak) Jo {ck\/tQ - i—j} Jo(kr)dk.
0

Find the steady temperature u(r, z) in a beam 0 <r < 00, 0 < z < a when

the face z=0 is kept at temperature u(r,0) =0, and the face z=a is

insulated except that heat is supplied through a circular hole such that
uy(rya)=H(b—r).

The temperature u(r, z) satisfies the axisymmetric equation

1
Upp + —Up + Uy, =0, 0<r<oo, 0<z<a.
r
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15. Find the integral solution of the initial-boundary value problem

1
Upp + —Up F+ Uy =ug, 0<r<oo, 0<z<o00, t>0,
r

u(r,z,0)=0 for all r and z,

(%> =0, for 0<z<o0, t>0,
or)._

(@> ——M for O0<r<oo, O0<t<oo
82 o /7012_’_7‘27 9 )

u(r,z,t) =0 asr—oo or z—o0.

16. Heat is supplied at a constant rate () per unit area per unit time over
a circular area of radius a in the plane z=0 to an infinite solid of
thermal conductivity K, the rest of the plane is kept at zero temperature.
Solve for the steady temperature field u(r, z) that satisfies the Laplace
equation

1
Uppr + —Upr + U, =0, 0<r<oo, —00<z<o00,
r
with the boundary conditions
u—0asr—oo, u—0 as]|z|— oo,

T a2

—Ku, = ( 2 ) H(a —r) when z=0.

17. The velocity potential ¢(r, z) for the flow of an inviscid fluid through
a circular aperture of unit radius in a plane rigid screen satisfies the
Laplace equation

1
¢rr+;¢r+¢zz:0, O<r<oo
with the boundary conditions
¢o=1 for O<r<l1
on z=0.
¢,=0 for r>1
Obtain the solution of this boundary value problem.

18. Solve the Cauchy-Poisson wave problem (Debnath, 1989) for a viscous
liquid of finite or infinite depth governed by the equations, free surface,
boundary, and initial conditions

1
¢TT‘ + ;(br + ¢zz =0,

thV <wrr+ %’@ljr - T%w"_wzz) ;
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where ¢(r, z,t) and ¥(r, z,t) represent the potential and stream func-
tions, respectively, 0 <r < oo, —h<z<0 (or —00 < z<0) and ¢ >0.

The free surface conditions are
n —w=0
wluy +wp)=0 on 2z=0,t>0
¢t +gn+2vw,=0

where n=rn(r,t) is the free surface elevation, u= ¢, + ¥, and w=¢, —

ﬂ — 1, are the radial and vertical velocity components of liquid par-
,

ticles, u=pv is the dynamic viscosity, p is the density, and v is the
kinematic viscosity of the liquid.

The boundary conditions at the rigid bottom are

u:¢r+"r/)z:0
1 on z=—h.
w=¢, — ;(rw)T:O

The initial conditions are

n:a@, o=19v=0 att=0,

where a is a constant and é(r) is the Dirac delta function.
If the liquid is of infinite depth, the bottom boundary conditions are

(¢,4) — (0,0) as z — —00.

19. Use the joint Hankel and Laplace transform method to solve the initial-
boundary value problem

o(r)

1
Upp + — Up — Uy —2eup=a ——=0(t), 0<r<oo, t>0,
r T
u(r,t) =0 as r— 00,
u(0,t) is finite for ¢ > 0,

u(r,0) =0=wu(r,0) for 0 <r < oo.
20. Surface waves are generated in an inviscid liquid of infinite depth due
to an explosion (Sen, 1963) above it, which generates the pressure field

p(r, t). The velocity potential u = ¢(r, z, t) satisfies the Laplace equation

1
Uppr + — Upr + U, =0, 0<r<oo, t>0,
T
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and the free surface condition

1 /0p
utt—|—guz:; <E> [H(r) — H{r,ro(t)}] on z=0,

where p is the constant density of the liquid, 7o () is the extent of the
blast, and the liquid is initially at rest.

Solve this problem.

21. The electrostatic potential u(r, z) generated in the space between two
horizontal disks at z =+ a by a point charge ¢ at » =2 =0 is described
by a singular function at r=2=0 is

u(r,z) = @(r, 2) + q(r® + 22) "2,

where ¢(r, z) satisfies the Laplace equation

1
¢TT+;¢T+¢Z,Z:O, 0<T<OO

with the boundary conditions

d(r,z) =—q(r* +22)77 atz=+a.

Obtain the solution for ¢(r, z) and then u(r, z).
22. Show that
() o [ F() =2 {rF(r)u(sr)}
2 2 p? b
(b) A [67‘" Jo(br)} = g exp (R 1a ) I (2—/;) )
(25)"(n - 1!
V(K2 + a2)n+%

|~ () [+ osts]

(C) % [,r,n—le—ar] —

f()

A

(0 ot [t 00| = =)

3

(d) A

(@) 0 [0 L 00} = (),

23. Show that

2 w2

(a) % [e*%} =e 2 (Self-reciprocal).
(b) 54 [6(r — a)] =a Jo(ak).
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1 1
= ==.
(c) [J -
24. Using the Parseval relation (7.3.2), show that
> 1 1 a\ntl
o) = [ tan) s (be) o=y (5

1
0<a<b, n+§>0.

25. (a) Solve the axisymmetric Dirichlet problem in a half space described
by Laplace equation

1
Upp + —Up + Uy, =0, O<r<oo, 2z>0,
r

u(r,0) = f(r), 0<r<oo,

u(r,z) =0 asr— o0, z—00.

(b) Find the solution of (a) when f(r)=H(c—r).
1
(¢) Find the solution of (a) when f(r) = ——, a>0.

26. Solve the axisymmetric small-amplitude vibration of a thin elastic plate
governed by the equation

0° 2 0%u
2 a o = —_—
a <5r2+rar) u(r,t) + 57 =0, 0<r<oo, t>0

with the initial conditions
u(r,0)=f(r), w(r,0)=0, 0<r<oo,

where a= 2%, D is the flexural rigidity, p is the density, and 2h is
the thickness of the plate.

27. Solve the forced vibration problem of an elastic membrane described by
the non-homogeneous boundary value problem

1 1 1
U’rr"’_;ur—c—zutt:—fp(r,t), 0<T<OO, t>07
u(r,0) = f(r), w(r,0)=g(r), 0<r<oo,

u(r, t)isbounded at co (r — 00),

where T is the tension of the membrane and ¢ = %.
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Mellin Transforms and Their Applications

“One cannot understand ... the universality of laws of nature, the
relationship of things, without an understanding of mathematics.
There is no other way to do it.”

Richard P. Feynman

“The research worker, in his efforts to express the fundamental laws
of Nature in mathematical form, should strive mainly for mathe-
matical beauty. He should take simplicity into consideration in a
subordinate way to beauty. ... It often happens that the require-
ments of simplicity and beauty are the same, but where they clash
the latter must take precedence.”

Paul Dirac

8.1 Introduction

This chapter deals with the theory and applications of the Mellin transform.
We derive the Mellin transform and its inverse from the complex Fourier trans-
form. This is followed by several examples and the basic operational properties
of Mellin transforms. We discuss several applications of Mellin transforms to
boundary value problems and to summation of infinite series. The Weyl trans-
form and the Weyl fractional derivatives with examples are also included.

Historically, Riemann (1876) first recognized the Mellin transform in his fa-
mous memoir on prime numbers. Its explicit formulation was given by Cahen
(1894). Almost simultaneously, Mellin (1896, 1902) gave an elaborate discus-
sion of the Mellin transform and its inversion formula.

367
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8.2 Definition of the Mellin Transform and Examples

We derive the Mellin transform and its inverse from the complex Fourier
transform and its inverse, which are defined respectively by

F O} =0 = o= [ gl (8:2.1)
yfl{c(k)}zg(g):\/%_ﬁ / G (k) (8.2.2)

Making the changes of variables exp(§) =z and ik=c — p, where ¢ is a
constant, in results (8.2.1) and (8.2.2) we obtain

G(ip —ic) = % /xpfcflg(log x)dz, (8.2.3)
0
1 c+100
g(logz) = Wir / 2" PG(ip — ic)dp. (8.2.4)

1
We now write —— x~ °g(logz) = f(z) and G(ip —ic)= f(p) to define the
V2T

Mellin transform of f(x) and the inverse Mellin transform as

A {f(@)} = F(p) = / 77 f (), (8.2.5)
’ 1 c+ioco
M)} = () =5~ / 277 f(p)dp, (8.2.6)

where f(z) is a real valued function defined on (0, c0) and the Mellin transform
variable p is a complex number. Sometimes, the Mellin transform of f(x) is
denoted explicitly by f(p)=.# [f(z),p]. Obviously, .# and .# ~! are linear
integral operators.

Example 8.2.1 (a) If f(x) =e ", where n > 0, then

oo

MY = F(p) = / e,

0
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which is, by putting nx =t,

oo

1 r
= 1 *fdt—ﬁ. (8.2.7)
T e npP
0

(b) If f(z)= _'1_ then

1 ~ 7 _ dx
%{1+x}:f(p):/xp 1'1+x’
0

t
which is, by substituting = = 1 ort= ,

1
=/t”_1(1—U“‘”"ldt:B(p,l—p)=F(p)F(1—p),
0

which is, by a well-known result for the gamma function,
= cosec(pm), 0<Re(p) < 1. (8.2.8)

(c) If f(z)=(e* —1)7L, then

o0

1 ~ — 1
///{ez_l}Zf(P):/ﬂf 1em—_1d$7

0

() 1 jo%s) 1
which is, by using ngoe_m === and hence, ; e "= pray

— r — —nx - F p

=3 [erteran= Y- B o rg)c) (5.29)
n=17 n=1 n
=1

where ((p Z n_ (Rep>1) is the famous Riemann zeta function.
(d) If f(z) T then

xp71672nxdx

—N
D
N
8
| [N}
—_
—
Il
kﬁ
)
=3
=
I
[N}
\8
8
i}
L
(]
8.
|8
—_
I
[\
(e
OL‘-‘$8

_ QZ L'(p) =271 (p) Z L =21"PT(p)¢(p). (8.2.10)
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(e) If f(z) = - :_ s then

1 -
a{ =02 e o (5.2.11)

This follows from the result

1 1] 2
e —1 er41]| e2o—1
combined with (8.2.9) and (8.2.10).

1
M {;}Z/xp_l(l—l—a:)_"da:
(L+a)" ’
0
which is, by putting a::L or t= x ,
1—1t 1+

1
/tp‘l(l — )" Pt
0

L(p)L'(n—p)
=B —p)= 8.2.12
(p;n—p) Ty ( )
where B(p, q) is the standard beta function.
Hence,
- I'(n)
HT(p)T(n — =—"
A AT (P)C(n—p)} D
(g) Find the Mellin transform of cos kz and sin kz.
It follows from Example 8.2.1(a) that
i I'(p) _T(p) pr . opm
ikx) _ r- _ -
M e ] = e ke (cos 5 —isinTg )
Separating real and imaginary parts, we find
A [coskz] = k7P T'(p) cos (%p) , (8.2.13)
A [sinkz] = k7P T'(p) sin (%p) . (8.2.14)

These results can be used to calculate the Fourier cosine and Fourier sine
transforms of #P~1. Result (8.2.13) can be written as

o0

- L'(p) mp
p—1 _

/x coskx dx = o cos( 2).
0
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7. {@}zy(g)

Or, equivalently,

Or,
_ 2 T'(p) ™
T p—1y _
F 2P} = — cos( 5 ) . (8.2.15)
Similarly,
_ 2 I'(p) . (mp
p—11
Fs{aP7 ) = i sm( 5 ) . (8.2.16)
1

8.3 Basic Operational Properties of Mellin Transforms
If #{f(x)}= f (p), then the following operational properties hold:
(a) (Scaling Property).

M { f(az)} =a " f(p), a>0. (8.3.1)

PROOF By definition, we have,

o0

(o)) = / 27 f(az)de,

0

which is, by substituting ax =t,

= a—lp ootff’—lf(t)dt: fif).
0
i
(b) (Shifting Property).
M [z f(2)] = f(p+a). (8.3.2)

Its proof follows from the definition.

(© a i ==7(2), (333)
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M {%f <%)}:f~(1—p), (8.3.4)
M {(log x)”f(a:)}:d%f(p), n=1,2,3,.... (8.3.5)

The proofs of (8.3.3) and (8.3.4) are easy and hence, left to the reader.
Result (8.3.5) can easily be proved by using the result

d
— p_lz 1 p—l. 9.
dpx (log x)x (8.3.6)

(d) (Mellin Transforms of Derivatives).

A (@) == -1Dfp-1), (8:3.7)
provided [zP~! f(z)] vanishes as z — 0 and as = — oo.
M (@) =(p =D —2)f(p-2). (8.3.8)
More generally,
A @) = (1 s o)
_ . L) o) m
) s A @l (839)

provided 2P~ 1 f(")(z) =0 as 2 — 0 for r=0,1,2,...,(n —1).

PROOF  We have, by definition,

o0

()] = / 7 (@) de,

0
which is, integrating by parts,

oo

— @ @) — (p— 1) / P2 f () de

0

=—(p-Dflp-1).
|
The proofs of (8.3.8) and (8.3.9) are similar and left to the reader.
() If 4 {f(2)} = f(p), then
M {zf ()} =—pf(p), (8.3.10)



Mellin Transforms and Their Applications 373

provided P f(x) vanishes at © =0 and as  — oo.
M ()} = (=1)’p(p+ 1) f(p). (8.3.11)
More generally,

T(p+n)

o (8.3.12)

M " [ (@)} = (-1)"

PROOF We have, by definition,

o0

M {af ()} = / o f'(z)de,

0
which is, integrating by parts,

o0

= WP @) —p / L f(2)dz = —pf(p).

0

Similar arguments can be used to prove results (8.3.11) and (8.3.12).

(f) (Mellin Transforms of Differential Operators).
If A {f(x)} = f(p), then

Vs [(di) f(fr)] — AP @) + o @) = (-1 f), (3313)
and more generally,
d " n._n
| (s52) 1) =i 8310

PROOF  We have, by definition,

2
¥ [(x%) f(:v)] = ) b f @)

=AM [ "(2)] + A |2 f' ()]
= —pf(p) +p(p+1)f(p) by (83.10) and (8.3.11)
= (=1)*p” f(p).
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Similar arguments can be used to prove the general result (8.3.14).

(g) (Mellin Transforms of Integrals).

{/f }:——fp+1) (8.3.15)

In general,

ML f(2)} = A {/In_lf(t)dt} :(—1)"F(£(fz)n)f(p+n), (8.3.16)
0

where I,, f(x) is the nth repeated integral of f(z) defined by

x

If(z)= / L 1 f(t)dt. (8.3.17)

0

PROOF We write

F ;v):/f(t)dt
0

so that F'(z) = f(x) with F(0) = 0. Application of (8.3.7) with F'(z) as defined

gives
MAf(x)=F'(z),p} =—(p—1)A {/f(t)dt,p—l},
0

which is, replacing p by p+ 1,
[ 1 1,
0

An argument similar to this can be used to prove (8.3.16). 1

(h) (Convolution Type Theorems).
If A {f(x)}=f(p) and #{g(x)} =G(p), then

A [f () * g(2)] = A

A [f(x) 0 g(x)] = A
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PROOF We have, by definition,

= f(&)% (&n)P~tg(n) Edn
0

- / 1 (€)de / P g(n)dn = Fp)a(p)
0 0

\8 0\8

xPdx flz §)dg, (z§=n),
!
o€ dé/ iep gy

/51 g df/ P f(n)dn = 51 — p) f(p).

0

Note that, in this case, the operation o is not commutative.
Clearly, putting = = s,

M- p)ap)} = / g(st)f(1)dt.
Putting g(t) =e ~* and g(p) =I'(p), we obtain the Laplace transform of f(t)

M HF(L=p)L(p)}

/e stftydt=ZL{f ()} = f(s). (8.3.20)
0
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(i) (Parseval’s Type Property).
If . {f(2)} = F(p) and 4 {g(z)} = §(p), then

c+io0o
M @)g(a)] = 5 / F(s (8.3.21)
Or, equivalently,
[e'e) c+io0o
/xpflf(x) 2m / f(s (8.3.22)
0 c—1i00

In particular, when p =1, we obtain the Parseval formula for the Mellin trans-
form,

[e'e) c+io0o
/f(a:)g(a: =5 / f(s)5(1 —s) (8.3.23)
0 c—100

PROOF By definition, we have

oo

~¢U@M@H=/¢”W@M@Mm
0

e’} c+ioco

:% 2P g(x)dx / x5 f(s)ds
- c—ico

:27”/]” ds/xp51()d
Ccﬁl

- 27 / f

When p =1, the above result becomes (8.3.23). |
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8.4 Applications of Mellin Transforms

Example 8.4.1 Obtain the solution of the boundary value problem

TP Upe + TUp + Uy =0, 0<z<00, 0<y<l

A, 0<z<1
u(z,0)=0, wu(z,1)= ,
0, z>1

where A is a constant.

(8.4.1)

(8.4.2)

We apply the Mellin transform of u(z, y) with respect to = defined by

o0
0

to reduce the given system into the form

Uy, +p*0=0, 0<y<l

A
u(p,0) =0, ﬂ(p,l)zA/xp_ldeE.

The solution of the transformed problem is

A sin
ﬂ’(pvy):_,—pyv O<Rep<1'
p sin p

The inverse Mellin transform gives

c+ioco
(2,y) = A x~ P sin py
u(z, —
Y 2m p sinp

c—1i00

dp,

(8.4.3)

where 4(p, y) is analytic in the vertical strip 0 < Re (p) = ¢ < 7. The integrand
of (8.4.3) has simple poles at p=nm, n=1,2,3,... which lie inside a semi-
circular contour in the right half plane. Evaluating (8.4.3) by theory of residues

gives the solution for x > 1 as

=l|h>
3|»~

RS

" sin ny.

(8.4.4)
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Example 8.4.2 (Potential in an Infinite Wedge).
Find the potential ¢(r, 6) that satisfies the Laplace equation

r2¢rr +7¢r + g9 =0 (845)

in an infinite wedge 0 <7 <00, —a <0 <« as shown in Figure 8.1 with the
boundary conditions

¢(T7 CY) = f(r)v (]5(7’, —Oé) = 9(7’) 0 S r< oQ, (846&]:))
¢(r,0) >0 as r—oo forall 0 in —a<f<o. (8.4.7)
AY
0=
& a .
0 y -0 > X
0=-x

Figure 8.1 An infinite wedge.

We apply the Mellin transform of the potential ¢(r, 8) defined by

o0

A [8(r,0)] = 3(p, 0) = / 1 (r, 0) dr

0

to the differential system (8.4.5)—(8.4.7) to obtain

2 it ~
% +p2G=0, (8.4.8)
o(p,a)=f(p),  bp, —a)=3(p). (8.4.9ab)

The general solution of the transformed equation is

qNS(p, 0) = Acos pd + B sin pb, (8.4.10)
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where A and B are functions of p and «. The boundary conditions (8.4.9ab)
determine A and B, which satisfy

A cos pa+ B sin pa = f(p)7

A cos pa — B sin pa = §(p).

A {0 +iw) o ) i)

These give ,
2 cos pa 2 sin pa
Thus, solution (8.4.10) becomes
~ R smp(a +6) _, . sinp(la—10)
f( Vi(p, o+ 0) + §(p)h(p, o — 6), (8.4.11)
where -
= sinp
hp,0) = ————.
(p.6) sin(2 pa)

Or, equivalently,

h(r,0) =4~ { sin pf }: (i) ( rsinnf . (84.12)

sin 2 pa 2a ) (14 27" cosnf +r27)
where
0 ™
=— or, 2a=-—
2« n’
Application of the inverse Mellin transform to (8.4.11) gives
6(r,0) = " {FD)h(p.a+0)} +.4 7 {ap)hp.a—0)},

which is, by the convolution property (8.3.18),

sy oS 7 £ f(€)de

20 &2 — 2(r&)m sinnf + r2n

£ g(€)de ™
—. (8.4.1
52” +2(ré)m 51nn9—|—7“2" » lal< 2n ( 3)
This is the formal solution of the problem.
In particular, when f(r)=g(r), solution (8.4.11) becomes
~ ~ . cospl L -
= = 4.14
¢(p,0) = f(p) cospor f(p)h(p,0), (8.4.14)
where 0
cos
hp.0)= = = {h(r.0)}
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Application of the inverse Mellin transform to (8.4.14) combined with the
convolution property (8.3.18) yields the solution

o(r,0)= [ f(& ( ) (8.4.15)
- Jran(z0) %
where

h(r,@)://ll{M}:(g> (L+rcosmh) (g 416

COS poy (14 2r27 cos2nf + r2n)

™
dn=_—.
ana n 2% I:l

Some applications of the Mellin transform to boundary value problems are
given by Sneddon (1951) and Tranter (1966).

Example 8.4.3 Solve the integral equation

/f k(x€)d = g(x), x>0. (8.4.17)

Application of the Mellin transform with respect to x to equation (8.4.17)
combined with (8.3.19) gives

where 1
h(p) ==
(p)=~ a7
The inverse Mellin transform combined with (8.3.19) leads to the solution
f@ =t o -pho)} = [gOhods.  (413)
0

provided h(z)=.# ! {B(p)} exists. Thus, the problem is formally solved.
If, in particular, 2(p) = k(p), then the solution of (8.4.18) becomes

oo

fa)= / 9(E) k(€ )de, (3.4.19)

0
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provided k(p)k(1 —p)=1. I

Example 8.4.4 Solve the integral equation

7f(€)g (g) % = h(x), (8.4.20)
0

where f(z) is unknown and g(z) and h(x) are given functions.
Applications of the Mellin transform with respect to = gives

fp)=hkp), kp)=-——

R A LT B IGTY Y E S CRE
0

8.5 Mellin Transforms of the Weyl Fractional
Integral and the Weyl Fractional Derivative

DEFINITION 8.5.1 The Mellin transform of the Weyl fractional integral
of f(x) is defined by

1)/(t—x)o‘_1f(t)dt, 0<Rea<l, z>0. (85.1)

W=[f(z)] = (o)

x

Often ;W * is used instead of W~% to indicate the limits to integration.
Result (8.5.1) can be interpreted as the Weyl transform of f(t), defined by

oo

W= f®)]=F(z,a)= %a) /(t —x)* L f(t)dt. (8.5.2)

x

We first give some simple examples of the Weyl transform.
If f(t)=exp(—at), Re a >0, then the Weyl transform of f(t) is given by

W ~%exp(— /t—a‘ Lexp(—at)dt,
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which is, by the change of variable t — z =y,

/ exp ay)dy
0

which is, by letting ay =t,

e—am 1 x —axr
W=elf(t)] = —— [t et 8.5.3
0= — (353)
0
Similarly, it can be shown that
T(u —
W=t = Llp—a) T, 0<Rea <Rep. (8.5.4)

L'(p)
Making reference to Gradshteyn and Ryzhik (2000, p. 424), we obtain

W~%[sinat] = a~%sin (ax + %) , (8.5.5)
W~%cosat] = a~% cos (ax + %) , (8.5.6)

where 0 <Rea <1 and a > 0.
It can be shown that, for any two positive numbers a and 3, the Weyl
fractional integral satisfies the laws of exponents

W WP f ()] = W[ f ()] = WP [W 2 f ()] (8.5.7)

Invoking a change of variable t — x =y in (8.5.1), we obtain

o0

Wl f(z)] = / Y + y)dy. (3.5.8)

0

d
We next differentiate (8.5.8) to obtain, D = e

o0

DW= f(x flx+t)dt
i
0 e
—F(Q)O/t Df(x +t)dt
— WD (). (8.5.9)

A similar argument leads to a more general result

DW= f(x)] =W [D" f ()], (8.5.10)



Mellin Transforms and Their Applications 383

where n is a positive integer.
Or, symbolically,
D"W e =W~eD", (8.5.11)
We now calculate the Mellin transform of the Weyl fractional integral by
. o T zya—1 . x
putting h(t) =t*f(t) and g <?):ﬁ (1-2) H (1—%), where H (1 - ?)
is the Heaviside unit step function so that (8.5.1) becomes

F(x,a):/h(t)g(%) %, (8.5.12)
0
which is, by the convolution property (8.3.18),
F(p, @) =h(p)3(p),
where ~ 3
h(p) = A{z" f(z)} = f(p+ a),
and
i) =t {1 =2 H (=)}
L oy ey Ba)_ T()
T / U TR (R0
Consequently,
n _ —a _ F(p) r
F(p.0) =4 W2 f(2).0) = 0 0+ (55.13)

It is important to note that this result is an obvious extension of result 7(b)
in Exercise 8.8

DEFINITION 8.5.2 If 8 is a positive number and n is the smallest
integer greater than B such that n — f=a >0, the Weyl fractional derivative
of a function f(x) is defined by

WS (x)] = E" W=D [f ()]

1 @
[(n—p) dz™

/(t — )" P f(t)dt, (8.5.14)

x

where E=—D.
Or, symbolically,

Wh =E W= = Erw—(n=h), (8.5.15)
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It can be shown that, for any g3,
WAWE =1=wPWw-~. (8.5.16)

And, for any 5 and ~, the Weyl fractional derivative satisfies the laws of
exponents

WEW? f(a)] = WO [f ()] = W WP f(x)]. (8.5.17)

We now calculate the Weyl fractional derivative of some elementary functions.
If f(z) =exp(—azx), a >0, then the definition (8.5.14) gives

Whe—ae = pr[W—(n=Be=az), (8.5.18)
Writing n — 8=« >0 and using (8.5.3) yields

Wﬂe—az _ En[W—ae—az] _ En[a—ae—am]

=a %(a"e ) =ale ", (8.5.19)

Replacing 8 by —a in (8.5.19) leads to result (8.5.3) as expected.
Similarly, we obtain

B,.— _F(ﬁ‘FN) —(B+p)
WP #_71“(@ x P, (8.5.20)

It is easy to see that
Wh(cos ax) = E[W =19 cos ax],

which is, by (8.5.6),

=a” cos (ax — %ﬂ'ﬁ) . (8.5.21)

Similarly,
1
W (sinaz) = a” sin (ax - 57TB> , (8.5.22)

provided « and g lie between 0 and 1.

If 8 is replaced by —a, results (8.5.20)—(8.5.22) reduce to (8.5.4)—(8.5.6),
respectively.

Finally, we calculate the Mellin transform of the Weyl fractional derivative
with the help of (8.3.9) and find

M WP f(2)] = A [E"W P f(a)] = (-1)" [D"W =P f(2)]
__Tw ~=8) £(2). p—n
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which is, by result (8.5.13),

“To-n To-p PP

— o A0~ 5]

_ ) &

=t (08 (8.5.23)

Example 8.5.1 (The Fourier Transform of the Weyl Fractional Integral).
F{W = f(x)} =exp (—%) k= F{f(z)}. (8.5.24)

We have, by definition,

oo oo

LL efik$ T —r a—1
e ] e e

:E/f(t)dt-ﬁ /exp(—ikx)(t—x)o‘_ldx.

FAW = f(2)} =

— 00 x

- f{f(m)}%a)//z{eikf}

In the limit as a— 0
lim Z{W™f(2)} = F{f(2)}.
a—
This implies that
WO{f(x)} = f(a).
We conclude this section by proving a general property of the Riemann-
Liouville fractional integral operator D™, and the Weyl fractional integral

operator W=, It follows from the definition (6.2.1) that D=%f(t) can be
expressed as the convolution

D= f(z) = ga(t) * £(2), (8.5.25)
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where )
ga(t) = ma t>0
Similarly, W~ f(z) can also be written in terms of the convolution
W= f(x) = ga(—2)xf (). (8.5.26)
Then, under suitable conditions,
_ Frl—a-p) :
MDD f(x)] = ——-— + a), 8.5.27
(D7 @) = oo fr +a) (35.27)
- I'p)
w— = _— . 8.5.28
MW @) = s ) (5.5.25)

Finally, a formal computation gives

i —a _L r z)dz T — a—1
O/{D faa(e)de = s / g(x)d 0/( 0 (et

which is, using the inner product notation,

(D™f, g)=({f, W™ g). (8.5.29)

This show that D™ and W~ behave like adjoint operators. Obviously, this
result can be used to define fractional integrals of distributions. This result is
taken from Debnath and Grum (1988). 0

8.6 Application of Mellin Transforms to Summation of
Series

In this section we discuss a method of summation of series that is particularly
associated with the work of Macfarlane (1949).

THEOREM 8.6.1 If .#{f(z)} = f(p), then
c+ioco

S smta=5 [ F)éan (5.61)

n=0 c—1i00



Mellin Transforms and Their Applications

where £(p, a) is the Hurwitz zeta function defined by

o0

§(p,a):2%, 0<a<1, Re(p)>

« (n+a)P

PROOF If follows from the inverse Mellin transform that

c+ioco
1 = _
frra) =g [ Fwn a7
)
Summing this over all n gives
c+ioco

nz_%f(njLa):ﬁ / F(p)&(p, a) dp.

c—100

This completes the proof.
Similarly, the scaling property (8.3.1) gives

c+ioo

fnz) =4 —H{n™? f(p)} =

2mi /
Thus,
00 c+i0o
S s =gy [« T b= ) 0
where ((p) = Z n~P is the Riemann zeta function.
n=1

When z =1, result (8.6.4) reduces to

c+100

ij: 27Tl/f

c—100

This can be obtained from (8.6.1) when a =0. |

Example 8.6.1 Show that

S = (1= 21 7) (),

z™ 0" f(p)dp

387

(8.6.2)

(8.6.3)

(8.6.4)

(8.6.5)

(8.6.6)
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Using Example 8.2.1(a), we can write the left-hand side of (8.6.6) multiplied
by t™ as

00 9] 1 o0
Z(_l)n—ln—ptn _ Z( n— 1tn . /(Ep_le_nrdit
n=1 n=1 F(p
- - 0
= L /xp—ldxi(_l)n—ltnze—nz
I'(p) —
0
_ 1 /xpfl te % .
T (p) 1+te®
0
- t
= —/a:p_l dx.
I'(p) ev +1
0

in which result (8.2.11) is used. [

Example 8.6.2 Show that
3 (Sm‘m) —5(m-a), O<a<om (8.6.7)

n=1

The Mellin transform of f(z)

I
7N
&,
]
Q
=
~_
.
<
)
93]

Substituting this result into (8.6.5) gives

i (Sinnan> - _gim- 700% ¢(p) cos (%p) dp. (8.6.8)

n=1
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We next use the well-known functional equation for the zeta function

71'
(277 C(1 = p) =20'(p) S (p) cos () (8.6.9)
in the integrand of (8.6.8) to obtain
oo c+1i00
(sinan) a 1 (27r>p ¢(1—p)
Z =75 5 — dp.
— n 2 27 J a p—1

The integral has two simple poles at p=0 and p = 1 with residues 1 and —7/a,
respectively, and the complex integral is evaluated by calculating the residues
at these poles. Thus, the sum of the series is

i": <sinnan> _ %(ﬂ _a).

n=1

8.7 Generalized Mellin Transforms

In order to extend the applicability of the classical Mellin transform, Naylor
(1963) generalized the method of Mellin integral transforms. This generalized
Mellin transform is useful for finding solutions of boundary value problems in
regions bounded by the natural coordinate surfaces of a spherical or cylindrical
coordinate system. They can be used to solve boundary value problems in
finite regions or in infinite regions bounded internally.

The generalized Mellin transform of a function f(r) defined in a <r < oo is
introduced by the integral

2p
_ _ -1 @
M A{f(r)}=F_(p)= / (rp - Tp+1) f(r)dr. (8.7.1)
The inverse transform is given by

MTHE )} =)= 5 / P E(p)dp, r>a,  (8.7.2)
L

where L is the line Re p=¢, and F(p) is analytic in the strip |Re(p)| = |c| < 7.
By integrating by parts, we can show that
2 0f . Of

M _ |:’f’ W +TE:| =p2 F,(p)+2p0«pf(a)7 (873)
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provided f(r) is appropriately behaved at infinity. More precisely,

lim [(7"” —a® r )y f. —p(r? + a2pr*p)f} =0. (8.7.4)

T—00

Obviously, this generalized transform seems to be very useful for finding the
solution of boundary value problems in which f(r) is prescribed on the internal
boundary at r =a.

On the other hand, if the derivative of f(r) is prescribed at r=a, it is
convenient to define the associated integral transform by

M [f(r)] =F1(p) Z/ <rP—1 + 73:1 ) f(rydr, |Re(p)| <, (8.7.5)

a

and its inverse given by

///J:l[f(]?)] =f(r)= 2%” /T*p Fi(p)dp, r>a. (8.7.6)
L

In this case, we can show by integration by parts that
%Jr |:T'

2
i % +r %] =p*F(p) —2a"" f(a), (8.7.7)

where f/(r) exists at r=a.

THEOREM 8.7.1 (Convolution).
It (1)} = Fy (p), and 4+ {g(r)} = G+ (p), then

A 90} =5 [ PG o) e (878)
L
Or, equivalently,
fo) =t | o [FL©GLp-ga| . 619)
L

PROOF We assume that F(p) and G4 (p) are analytic in some strip
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|[Re(p)| <. Then
2p

MLF() 9(r)} = 7 ( + fpﬂ) F(r)g(r)dr

a

oo oo

:/rp_lf(r)g(r)dr—|—/i—flf(r)g(r)dr (8.7.10)

= /F+ dg/rpfl
2mi

2
+% %g(mdr/r*fm(@dg. (8.7.11)
L

a

Replacing ¢ by —¢ in the first integral term and using F (£) =a?* F, (=¢),
which follows from the definition (8.7.5), we obtain

/ S FL(&)dE = / 2L (6)de. (8.7.12)

The path of integration L, Re(§) =c¢, becomes Re(£) = —c, but these paths
can be reconciled if F(§) tends to zero for large Im(¢§).
In view of (8.7.11), we have rewritten

o0

a2P 1 a2r—2¢
/mf(r)g(r)ch‘:%/F / e 9 (8.7.13)
L

a

This result is used to rewrite (8.7.10) as

2p

MA@} = ]O( + ) Fgtr)ar

o0 o0

a®?
= /rp’lf(r) g(r) dT+/rT’+1 f(r)g(r)dr

a

e ARGl / gy dr
L
2p 2&
—|——/F+ S/ p—E+1 g(r

— o [ FOG -0 e
L
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This completes the proof. |

If the range of integration is finite, then we define the generalized finite
Mellin transform by

a’?

///f{f(r)}:F‘i(p):/a (r”_l - rp+1) f(r)dr, (8.7.14)
0

where Rep <.
The corresponding inverse transform is given by

1 T\ .
f(T)———%_Z. (;) F*(p)dp, 0<r<a,
j

which is, by replacing p by —p and using F® (—p) = —a~2P F (p),

1
=— [ r"PF%(p)dp, 0<r<a, (8.7.15)
2m
L
where the path L is Re p= —c with |¢| <.

It is easy to verify the result

a’?

M [+ 10} = / (Tp_l - rp+1) {r? frr + 1 fr }dr
0

=p? F*(p) —2paP f(a). (8.7.16)

This is a useful result for applications.
Similarly, we define the generalized finite Mellin transform-pair by

%1U0H=Fﬂm=]<ﬁlﬁvfi>ﬂﬂwa (8.7.07)

1) = () [P0 =5 [ R (878)

L

where |Rep| <7.
For this finite transform, we can also prove

w1 = [ (7 ) (e 2
0

=p’F%(p)+2a""" f'(a). (8.7.19)

This result also seems to be useful for applications. The reader is referred
to Naylor (1963) for applications of the above results to boundary value prob-
lems.
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8.8 Exercises

1. Find the Mellin transform of each of the following functions:

(a) f(x)= H(a—a:) a>0, (b) f(x)=2™e ™, m,n>0
(©) f(2) = 55, (@) fa)=J3),

o om0

() f@)—exp (~as?), a>0, ) TO=E):

(k) f(z)=_Ci(x), (G) f(z)=erfe(z),

(m) f(z)=(1+z)"", D) flz)=(1+2)""

where the exponential integral is defined by

o0

Ei(x)z/t’le’t dt:/{l e s de.
1

x

2. Derive the Mellin transform-pairs from the bilateral Laplace transform

and its inverse given by

() c+ioco
. 1 _
ato)= [ e gttrat, o)== [ o

3. Show that .
M| — | =T'(p) L
[e”ew} (p) L(p),
here L(p) = 1 1 1 is the Dirichlet L ti
where (p)—ﬁ—¥+5—p—---1s e Dirichlet L-function.
4. Show that ) P )
p)L\n—p
M = .
{ (1+ax)” } aPT'(n)
5. Show that

MA{xT" Tp(ax)} =

6. Show that
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@ 4 [eos (B f1-p] =25 10},
o) in (B) v fa-p] =7 5 0}

7. If I f(x) denotes the nth repeated integral of f(z) defined by

oo

/I;f’_lf(t)dt

x

12 f(x)

show that

[/f t)dt, p]—]% flp+1),

(0) 132 F(@)) = 5 P Fot )

8. Show that the integral equation

has the formal solution

c+ioco

=5 [

c—100

9. Find the solution of the Laplace integral equation

oo

|GG

0

1
(I+a)"

10. Show that the integral equation

x>+7f<s>g(§) -
0

has the formal solution

c+100 ~
__L [ 2h(p)
“2mi ) 1-3g(p)
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11. Show that the solution of the integral equation

e | % ag

f)=c +O/e o(-5) 105
is ‘

1 c+100 B I‘(p)
f0=5m [ o {2
12. Assuming (see Harrington, 1967)
M [f(reie)} =/rp_1f(rei9) dr, pis real,

0

and putting re® =¢, .4 {f(€)} = F(p) show that
(a) A [f(re); r— p]=exp(—ipd) F(p).
Hence, deduce
(b) .~ {F(p) cos pf} =Re[f(re”)],
(¢) 4 1 {F(p) sin ph} = —Im[f(rew)].
13. (a) If A [exp(—r)] =T(p), show that

M [exp(—rew)} =T(p) el

(b) If A [log(1+ 7)) = ,L, then show that
psinmp

- 0
A [Re log (1 +7e™)] = Teos b7
psin7p

395

14. Use .4 ! { T }: ! = f(z), and Exercises 12(b) and 12(c), re-

sin pr 1+z

spectively, to show that

(a) 1 7 cos pl 1+ rcosf

a —_ =

sin pr 1+ 2rcosf + r2
1 [ msinpld rsin 6

b) 41— ipsrp=--—"--———
(b) { sin pmr P T} 1+ 2rcosf + r?

15. Find the inverse Mellin transforms of

(a) T(p)cospf,  where — g <0< Z, (b) T'(p) sin pé.

2
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16. Obtain the solution of Example 8.4.2 with the boundary data

(a) o(r, @) =¢(r, —a) =H(a —r).

(b) Solve equation (8.4.5) in 0 <r < oo, 0< 6 <« with the boundary
conditions ¢(r, 0) =0 and ¢(r, a) = f(r).

17. Show that

>, cos kn k2 nk 7w =1 2
==+ — d b —_ =
N R I Do

18. If f(x)= > ane ™, show that
n=1

M f(@)}=F(p)=T(p) 9(p),

oo
where g(p) = Z an n~ P is the Dirichlet series.

n=1
If a, =1 for all n, derive
Show that

19. Show that

@ 3 T ey,

np

3
Il
-

(b) . {Z(—l)"lf(m)} =(1=2""7)¢(p) f(p)-

n=1

Hence, deduce

20. Find the sum of the following series
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21. Show that the solution of the boundary value problem

12¢pr + 1y + oo =0, 0<r<oo, 0<O<T

¢(r,0) =d(r,m) = f(r),
is
1 e . f(p) cos {p (9— g)} dp
(;5(7",9)—2—71_2_ / r . (%p) )

c—1i00

22. Evaluate
Z coRan _ (a® — 3ma® + 27%a).

23. Prove the following results:

(a) / €”f(x§)g(€)d£] — f(p) (1 +n—p),

(b) /5” () d&] F0) 3o+ n+1).

24. Show that
(a) W—e"]=€e"", a>0,
(b) W2 [ ! exp (—\/5)} _ K x>0,

NE LT
where K (z) is the modified Bessel function of the second kind and order
one.

25. (a) Show that the integral (Wong, 1989, pp. 186-187)
/2
1
I(:U):/Jf(xcosﬁ)dﬁ, v>=3,
0

can be written as a Mellin convolution

- / F(x€) g(€) de
0

where

1-€)"2, 0 1
(€)= J2(€) and g<§>={( =) <t }

0, £>1
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(b) Prove that the integration contour in the Parseval identity

c+100

1 -
I(z)=— P f(p)g(l—p) dp, —2v<e<],
2mi )
cannot be shifted to the right beyond the vertical line Re p=2.

26. If f(z)= /exp(—xztz) : %I;t J1(t)dt, show that

0
-

27. Prove the following relations to the Laplace and the Fourier transforms:

(a) A[f(x),p]=2Z[f(e™"),p],
(b) A[f(x);a+iw]=F[f(e e ";w],

where .Z is the two-sided Laplace transform and .% is the Fourier trans-
. 1
form without the factor (27)~ 2.

28. Prove the following properties of convolution:

(a) fxg=g=*f, (b) (f*g)*xh=fx*(g*h),
(c) f(x)xd(x—1)=f(x), (d) 0(z —a)* f(x)=a"'f (§)7

© 5°0- 1 0= (1) "1

o () wo-[(2) oo [(2)]

29. If A {f(r,0)} = f(p.0) and V2f(r,0) = frr + L f, + -5 fop, show that
2

MANf(r,0)} = [%

44p—mﬂf@—2ﬁ»
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and V' =MA = Dagx* 2+ A+ DMVad ™+ A+ 2)(A+ Dagd + -
+h+n—DA+n-2a, "3+ A+ mh+n— Dax**+7-2
+e (28.4)

+ O+ n+ D+ ma, , xH1
are substituted into Eq. (28.7). Terms with like powers of x are collected together and set equal to zero. When
this is done for x" the resulting equation is a recurrence formula. A quadratic equation in A, called the indicial
equation, arises when the coefficient of x° is set to zero and aj is left arbitrary.

The two roots of the indicial equation can be real or complex. If complex they will occur in a conjugate
pair and the complex solutions that they produce can be combined (by using Euler’s relations and the identity
x4t = xap®ib Inxy (o form real solutions. In this book we shall, for simplicity, suppose that both roots of the
indicial equation are real. Then, if A is taken as the larger indicial root, A = A, > A,, the method of Frobenius

always yields a solution
w®=x"Y a,()x" (28.5)
n=0

to Eq. (28.1). [We have written a,(A) to indicate the coefficients produced by the method when A =2A,.]
If P(x) and Q(x) are quotients of polynomials, it is usually easier first to multiply (28.7) by their lowest
common denominator and then to apply the method of Frobenius to the resulting equation.

GENERAL SOLUTION

The method of Frobenius always yields one solution to (28.7) of the form (28.5). The general solution (see
Theorem 8.2) has the form y = c;v,(x) + ¢, y,(x) where c; and ¢, are arbitrary constants and y,(x) is a second
solution of (28.7) that is linearly independent from y,(x). The method for obtaining this second solution depends
on the relationship between the two roots of the indicial equation.

Case 1. If A, — A, is not an integer, then
Y () =x" Y a,(hy)x" (28.6)
n=0
where y,(x) is obtained in an identical manner as y,(x) by the method of Frobenius, using A, in place of ;.

Case 2. If X, =2,, then
¥ (@) =y @ Inx+x" Y bA)x" (28.7)
n=0

To generate this solution, keep the recurrence formula in terms of A and use it to find the coefficients
a,(n > 1) in terms of both A and q,, where the coefficient g, remains arbitrary. Substitute these a,, into
Eq. (28.2) to obtain a function y(A, x) which depends on the variables A and x. Then

_dy(\,x)
V()= Fren i (28.8)
Case 3. If A, — A, =N, a positive integer, then
»(@=d M) nx+x7Y d (h)x" (28.9)
n=0

To generate this solution, first try the method of Frobenius. with A,. If it yields a second solution, then
this solution is y,(x), having the form of (28.9) with d_; = 0. Otherwise, proceed as in Case 2 to generate
(A, x), whence

d
»(x)= ﬁ[(l =My 0l (28.10)
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Solved Problems

28.1. Determine whether x = 0 is a regular singular point of the differential equation
Y —xy+2y=0

As shown in Problem 27.1, x=0 is an ordinary pont of this differential equation, so it cannot be a regular
singular point.

28.2. Determine whether x = 0 is a regular singular point of the differential equation

2x3y" + Tx(x + 1)y —3y=0

Dividing by 2x?, we have

P = 7();+1)

-3
and Q(x)= 7

As shown in Problem 27.7, x =0 is a singular point. Furthermore, both
xP(x) = %(x +1) and x'Q(x)= —%

are analytic everywhere: the first is a polynomial and the second a constant. Hence, both are analytic at x =0, and
this point is a regular singular point.

28.3. Determine whether x = 0 is a regular singular point of the differential equation
Y +23Y +y=0
Dividing by x>, we have
Px)= = and Q(x)= LS
X X
Neither of these functions is defined at x = 0, so this point is a singular point. Here,

xP(x)=2 and xZQ(x)zl
X

The first of these terms is analytic everywhere, but the second is undefined at x = 0 and not analytic there. Therefore,
x =0 is not a regular singular point for the given differential equation.

28.4. Determine whether x = 0 is a regular singular point of the differential equation

8x2y” + 10xy + (x— D)y=0
Dividing by 8x2, we have
1 1

5
P(x)—a and Q(x)—g—g

Neither of these functions is defined at x = 0, so this point is a singular point. Furthermore, both
5 2 1
xP(x) = 7 and x°Q(x)= g(x -1

are analytic everywhere: the first is a constant and the second a polynomial. Hence, both are analytic at x =0, and
this point is a regular singular point.
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28.5.

28.6.

SERIES SOLUTIONS NEAR A REGULAR SINGULAR POINT [CHAP. 28

Find a recurrence formula and the indicial equation for an infinite series solution around x = O for the
differential equation given in Problem 28.4.

It follows from Problem 28.4 that x = 0 is a regular singular point of the differential equation, so Theorem 24.1
holds. Substituting Eqs. (28.2) through (28.4) into the left side of the given differential equation and combining
coefficients of like powers of x, we obtain

X[8AMA — Dag + 10hag — apl + ¥ 8(A + DAa; + 10(A + Da; + ay— a;] + -
+ X8+ m)A+n — Da,+ 10k + n)a, +a, 1—a,]+ =0
Dividing by x* and simplifying, we have
[8A2 + 2A — 1]ag + x[(8A% + 18X + D)a; + ag] + -+
+X{[BA+n)2+2h+n) — 1la,+a,_1}+-=0
Factoring the coefficient of a, and equating the coefficient of each power of x to zero, we find

8\ +2h—1ay=0 ()
and, forn=>1,
A+ n) — 120+ n) + 1]a, +a, ;=0

an = L an—l
(400 + 1) —1][2(A + m) +1] @

or,

Equation (2) is a recurrence formula for this differential equation.
From (1), either @y =0 or

8\2+2A—1=0 3)

It is convenient to keep ag arbitrary; therefore, we must choose A to satisfy (3), which is the indicial equation.

Find the general solution near x = 0 of 8x2y” + 10xy + (x — 1)y =0.

The roots of the indicial equation given by (3) of Problem 28.5 are A, =+, and A, =—1. Since A, —A, =2,

the solution is given by Eqs. (28.5) and (28.6). Substituting A =1 into the recurrence formula (2) of Problem 28.5
and simplifying, we obtain

a, :_—1a,ﬁ1 (n=21)
2n(dn+3)
-1 -1 1
Thus, a=—a, a=—a =—a,,
R VR
and v (x) =g x"! l—ix+Lx2+~~
' ’ 147 616

Substituting A =—+ into recurrence formula (2) of Problem 28.5 and simplifying, we obtain

-1
an: an—l
2n(4n -3)
1 -1 1
Thus, a=——a, a,=—a, =—a,,
1 2 0 2 20 1 40 0

1 1
and N=ax | 1-=x+—x*+.-
»(x)=a, ( 5 10
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28.7.

28.8.

The general solution is

Y= (%) + 6, 9,(x)

where k; = ¢1ay and k, = cya,.

279

Find a recurrence formula and the indicial equation for an infinite series solution around x = O for the

differential equation

2x3y" + Tx(x + 1)y —3y=0

It follows from Problem 28.2 that x = 0 is a regular singular point of the differential equation, so Theorem 28.1
holds. Substituting Eqs. (28.2) through (28.4) into the left side of the given differential equation and combining

coefficients of like powers of x, we obtain
P2AMA — Dag + Thag — 3ag] + x* P20 + DAay + Thag + 7 + Day — 3a1] + -
+ X 2(h+ m)(A+n— Da, + Th+n— Da, |+ 7T +na,—3a,]+ -0
Dividing by x* and simplifying, we have
(2A2 + 5 — 3)ag + x[(2A* + O + Da; + Thag] + -+
+xM[2A+n)?+ 5 +n) = 3la, + TA+n—1a,_}+--=0
Factoring the coefficient of a, and equating each coefficient to zero, we find

(X2 + 5A—3)a,=0
and, forn=>1,

2 +n) — 1[(A+ 1) +3la,+ 7 +n—1Da, =0

B “Th+n-1) .
T2+ —1[A+m) +3] !

or,

n

Equation (2) is a recurrence formula for this differential equation.
From (1), either a; =0 or
2A2+50-3=0

It is convenient to keep a arbitrary; therefore, We require A to satisfy the indicial equation (3).

Find the general solution near x = 0 of 2x*y” + 7x(x + 1)y — 3y =0.

o)

2

&)

The roots of the indicial equation given by (3) of Problem 28.7 are A, =1 and A, =-3. Since A, — A, =1, the

solution is given by Egs. (28.5) and (28.6). Substituting A=1 into (2) of Problem 287 and simplifying,

2

we obtain
o =21Cn7D s
2n(2n+7)
Thus, alz—lao, azz—galzﬂao,
18 44 792

7 147
and X)=ax"1-=—x+—x"+--
»n(x)=a, 18 79
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28.9.

28.10.

SERIES SOLUTIONS NEAR A REGULAR SINGULAR POINT [CHAP. 28

Substituting A = =3 into (2) of Problem 28.7 and simplifying, we obtain

an:M ., (2]
n(2n—-"17)
21 7 49 7 343
Thus, alz—?ao, az——§a1 ?ao, 032—502_— 15 % a, =

and, since a, =0, a,=0 for n > 4. Thus,
21 49 343
X)=ax|1-x+—=x*-=X°
¥, (%) 0 5 5 15
The general solution is

Y= (X) +6,0,(%)

=kx" l—lx+ﬂx2+m +k,x7 l—éx+£xz—ﬁx3
18 792 5 5 15

where k; = ¢1ay and k, = ¢, a.

Find the general solution near x =0 of 3x*y” — xy’ +y=0.

Here P(x) = —1/(3x) and Q(x) = 1/(3x°); hence, x = 0 is a regular singular point and the method of Frobenius is
applicable. Substituting Egs. (28.2) through (28.4) into the differential equation and simplifying, we have

KBAZ—4h+ 1ag+ > T BA2 + 20ay + - + 2T [BA+ )2 — 4+ m) + 1]a, + --- =0
Dividing by x* and equating all coefficients to zero, we find
BA—4h+ Day=0 ()
and BAr+n?—4r+m +1la,=0 @®=1) (2)

From (1), we conclude that the indicial equation is 3A? — 4\ + 1 = 0, which has roots A; =1 and A, = +

Since A, — A, =2 the solution is given by Egs. (28.5) and (28.6). Note that for either value of A, (2) is satisfied by
simply choosing a,, =0, n > 1. Thus,

y,(x) = x' 2 ax"=ax y,(x)=x" 2 a,x" = ax"
n=0 n=0

and the general solution is

y =) + 29,0 = kix + kx!?

where k; = c1ay and k, = c,a,.

Use the method of Frobenius to find one solution near x = 0 of x*y” + xy’ + x%y = 0.

Here P(x)=1/x and Q(x) =1, so x =0 is a regular singular point and the method of Frobenius is applicable.
Substituting Eqgs. (28.2) through (28.4) into the left side of the differential equation, as given, and combining
coefficients of like powers of x, we obtain

P A 2] + T+ D2ag] + 32 2L+ 2%y + agl + - + X T [(A+m)2a, +a, 5]+ =0
Thus, May=0 )
(A+1)%a; =0 2

and, forn>2, A+ mn’a,+a, ,=0,or,

-1

= P 3
an (}\I+n)2 an—z (n>2) ( )
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The stipulation n > 2 is required in (3) because a,, _, is not defined for n =0 or n = 1. From (7), the indicial equation
is A2 =0, which has roots, A, = A, =0. Thus, we will obtain only one solution of the form of (28.5); the second solution,
V,(x), will have the form of (28.7).

Substituting A=0 into (2) and (3), we find that a; =0 and a,=—(1/n)a,_,. Since a;=0, it follows that

0=a3=as=a;=---. Furthermore,
a ——la ——;a a ——La ——;a
S e 1) S T R ST 0 T
ooty oo 1 1
* o3t 2@t BT 284n? °

- (=Dk _
and, in general, a,, :m ay (k=1,2,3,...). Thus,
(x)=ax0 1_;x2+;x4+...+ix2k+...
N ‘ 221? 242n? 2% (k1y?
- 1y

:aoz ( )zxzn 4

28.11. Find the general solution near x = O to the differential equation given in Problem 28.10.

One solution is given by (4) in Problem 28.10. Because the roots of the indicial equation are equal, we use Eq. (28.8)
to generate a second linearly independent solution. The recurrence formula is (3) of Problem 28.10, augmented by (2)
of Problem 28.10 for the special case n= 1. From (2), @; = 0, which implies that 0 = a3 = as=a,; = ---. Then, from (3),

-1 -1 1
a4, =———a,, a,= a, = a,,
R W o LV G
Substituting these values into Eq. (28.2), we have

1 1
}\, — x__ A+2 s A+ 4
(&%) a{x a2 Tardior s T }

ad . N . - .
Recall that ﬁ(xx y=x"*1Inx. (When differentiating with respect to A, x can be thought of as a constant.) Thus,
8}’(X,x):ao Plnx + 2 quz_ ! Zxx+z
oA (A+2) A+2)
_ 2 xx+4 _ 2 xx+4
A+ 4’ (A+2)? A+ +2)°
+;x“4 Inx+--
(A+ DA+ 2)*
and
yz(x):% :ao[lnx+22—3x2—21—2x2 Inx
2=0

2 4 2 . I 4
—4322x —Wx +4222x Inx+---

:(lnx)ao[l—z;xz+%x4+,.}
2°(1H 2°(2H
+a{zx—2(1)—4x—42[l+1]+..1
2°(1H 2°@2hH L 2

x’ x* 3
=y,(x) lnx+a{m(l)—m[5]+..} o

which is the form claimed in Eq. (28.7). The general solution is y = ¢;y1(x) + ¢, y,(x).
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28.12.

28.13.

28.14.

SERIES SOLUTIONS NEAR A REGULAR SINGULAR POINT [CHAP. 28

Use the method of Frobenius to find one solution near x = 0 of x2y” —xy’ + y=0.

Here P(x) =—1/x and Q(x) = I/x%, so x= 0 is a regular singular point and the method of Frobenius is applicable.
Substituting Egs. (28.2) through (28.4) into the left side of the differential equation, as given, and combining coefficients
of like powers of x, we obtain

A - D2ag+ M)+ - + A+ )2 =20+ n) + 1a, + - =0
Thus, (A—1)%a;=0 (I
and, in general, [(A+n)? =200 +n) +1]a,=0 2)

From (1), the indicial equation is (A — 1)> = 0, which has roots A; = A, = 1. Substituting A =1 into (2), we obtain
n*a, =0, which implies that @, = 0, n > 1. Thus, y;(x) = a,x.

Find the general solution near x = O to the differential equation given in Problem 28.12.

One solution is given in Problem 28.12. Because the roots of the indicial equation are equal, we use Eq. (28.8)
to generate a second linearly independent solution. The recurrence formula is (2) of Problem 28.12. Solving it for
a,, in terms of A, we find that a,=0 (n>1), and when these values are substituted into Eq. (28.2), we have
v (A, X) = apx™ Thus,

dy(A,x)
ar

dy(A, x)
ar

=ax" Inx

=gxInx=y(x)Inx
A=1

and »(x)=

which is precisely the form of Eq. (28.7), where, for this particular differential equation, b,(A)=0(n=0,1,2, ...).
The general solution is

Y= eyilx) + yax) = k(@) + kyx In x

where k; = ¢1ay, and k, = ¢,a,,.

Use the method of Frobenius to find one solution near x = 0 of x*y” + (x* — 2x)y’ + 2y = 0.

Here
P(x)zl—2 and Q(x)zi2
x x
so x=0 is a regular singular point and the method of Frobenius is applicable. Substituting, Eqs. (28.2) through

(28.4) into the left side of the differential equation, as given, and combining coefficients of like powers of x, we
obtain

A2 = 3%+ Dag] + xR = Nay + dagl + -+
+ XM A+ n)? -3+ n) +2la, + (A+n—Da,_}+--=0

Dividing by x*, factoring the coefficient of @,, and equating the coefficient of each power of x to zero, we obtain
(A2 =3A+2)a;=0 ()

and, in general, [(A+n) = 2][((A+n)— 1]a, + (A+n—Da,_1=0, or,

1
a =———a

= (2]) @

n—1

From (1), the indicial equation is A>—3A +2 =0, which has roots A; =2 and A, = 1. Since A; — A, = 1, a positive
integer, the solution is given by Eqs. (28.5) and (28.9). Substituting A =2 into (2), we have a,=—(1/n)a, _,
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28.15.

from which we obtain

a4 =—a
1 1

az —Eal —an

_ 1a 11 1 “
AT

- -1
and, in general, a, = a,. Thus,
2 - (_1)" n 2 -x

= —_— = 3

y(x) =ayx ; . x"=ayx'e (&)

Find the general solution near x = O to the differential equation given in Problem 28.14.

One solution is given by (3) in Problem 28.14 for the indicial. root A; = 2. If we try the method of Frobenius
with the indicial root A, =1, recurrence formula (2) of Problem 28.14 becomes

which leaves a;, undefined because the denominator is zero when 7 = 1. Instead, we must use (28.10) to generate a
second linearly independent solution. Using the recurrence formula (2) of Problem 28.14 to solve sequentially for
a,(n=1,2,3,..) in terms of A, we find

LS DS SRR S B
oAt aa-n ™ WA A+DAA-1D

Substituting these values into Eq. (28.2) we obtain

_ 1 xx+1+ 1 xx+z_ 1 xx+3+“‘
=1 AA-1) A+ DAR-1)

yA,x)=aq, {xl

and, since A—A,=A—1,

(A=A y(A, x):a{(k—l)xx—xx”+lx“2— ! x“3+~1

A AMA+D)
Then
i[(7»—7» Yy x)]=a,| x* + A =Dx* Inx — x**! lnx—ix’”2 +lxMz Inx
A v ‘ A A
+ 1 xx+3+ 1 xx+3_ 1 xx+3 Inx +---
AP+ 1) AMA+D)? AMA+1D)
and

9 -
»(x)= ak[(x A)y(h, x)]

A=ty =1

1 1 1
=a)| x+0-x"Inx—x +x Inx+=x"+=x* —=x" Inx + -

2 4 2

2 5, 1 4 5 3 4
=(-lnx)g,| x" —x +=x"+ [+ g x—x +=x"+--
2 4
2 3 3

=—y(x) lnx+a0x(1—x +Zx +j

This is the form claimed in Eq. (28.9), with d_; =-1, dy=ay, d, =0, d, :%ao,m. The general solution is
¥ =110 + cap2().
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28.16.

28.17.

SERIES SOLUTIONS NEAR A REGULAR SINGULAR POINT [CHAP. 28

Use the method of Frobenius to find one solution near x = 0 of x2y” + xy’ + (x2 — 1)y = 0.

Here

P(x) :l and Q(x)=1 —LZ
x x

so x = 0 is a regular singular point and the method of Frobenius is applicable. Substituting Eqs. (28.2) through (28.4)
into the left side of the differential equation, as given, and combining coefficients of like powers of x, we obtain

FA? = Dagl + X [+ 1) = 1ag + ¥ 2+ 2)% — 1]ay +ag} + -+

+x A+ n)? - 1la,+a, 3 +-=0
Thus, (A= 1ay=0 "
[(A+1)* = 1la;=0 2

and, for n>2, [(A+n)? — 1la,+a,_, =0, or,

1

anzmapz (n22) 3

From (1), the indicial equation is A> — 1 = 0, which has roots A, = 1 and A, =—1. Since A, — A, =2, a positive integer,
the solution is given by (28.5) and (28.9). Substituting A= 1 into (2) and (3), we obtain a; = 0 and

-1
a,=———a, , (n22)
nn+2)
Since @; =0, it follows that 0 = a3 = as= a; = ---. Furthermore,
-1 -1 -1 1 -1 -1
a, =—=——a, a, a, PTG

=—a =—a,=—da,, =—a
204) ° 22121 a6) ¢ 2% 6@8) © 2%314!

and, in general,

a —ia k=1,72, 3, ..)
EUo¥kke+y 0 T T
- R
us, »®=axy ————x “h

S0l (n+ 1)

Find the general solution near x = O to the differential equation given in Problem 28.16.

One solution is given by (4) in Problem 28.16 for the indicial root A, = 1. If we try the method of Frobenius
with the indicial root A, =—1, recurrence formula (3) of Problem 28.16 becomes

1

el 71
an—2) "’

n

which fails to define @, because the denominator is zero when n = 2. Instead, we must use Eq. (28.10) to generate
a second linearly independent solution. Using Eqs. (2) and (3) of Problem 28.16 to solve sequentially for

a,(n=1,2,3,...)in terms of A, we find 0=a; = a3 =as=--- and
-1 1
= e 4= 7 a4y,
A+3)(A+1) A+3HA+3)(A+1)
Thus, y(}\,, x):ao xx—;xhz_F 1 > PRI
A+3)(A+1) A+3HA+3)(A+1)

Since A—A;=A+1,

_ _ Ao -1 A+2 1 Abd
(A Xz)y(k,x)—a{(k+l)x (x+3)x +(X+5)(X+3)2x + }
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and

%{(x —A)Y A, V] =a, |:x7‘ + A+ Dxt Inx+ m :3)2 X2

1 A+2 1 A+4

C(A+3) T+ (13

- 2 PR 1 X nx + o
A +5(r+3)° (A+5)(A+3)*

J
Then y,(x) = ﬁ[(k = k) y(A,x)]

A=hy =-1

=aq, x’1+0+lx—lxlnx—ix3 —ix3 +Lx3 Inx+---
4 2 64 32 16

:—%(lnx)aox[l—%x2 +m]+ ao[x1 +lx—ix3 +]

1 1 5
=——(Inx)y,(x) +ax | 1+=x"——x"+--- 1
2( y(x) +a, [ ) oA ] o)

This is in the form of (28.9) with 4 | = —l, dy=ag, d;=0, d, :lao, d3=0, d, :;—jao,m.The general solution is
Y=o + ey (). 2 4

28.18. Use the method of Frobenius to find one solution near x = 0 of ¥*y” + (x* + 2x)y’ — 2y = 0.

Here

P(x):1+2 and Q(x):—i2
x x

so x = 0 is a regular singular point and the method of Frobenius is applicable. Substituting Eqs. (28.2) through (28.4)
into the left side of the differential equation, as given, and combining coefficients of like powers of x, we obtain

AT+ A= 2ag] + X T A2 +30)a; + Aagl + -+
+ XTI+ m)?+ A +n) —2la,+ A+n—Da,_1}+---=0
Dividing by x*, factoring the coefficient of a,, and equating to zero the coefficient of each power of x, we obtain
A2+A—2ay=0 ()
and, forn>1,
[A+n)+2][(A+n)—1la,+ A+n—1a,_,=0
which is equivalent to

1
a =

- =1 2
n }\I+n+zan—1 (n ) ()

From (1), the indicial equation is A2+ A — 2 =0, which has roots A; = 1 and A, = 2. Since A; — A, =3, a positive
integer, the solution is given by Egs. (28.5) and (28.9). Substituting A = 1 into (2), we obtain a, = [-1/(n + 3)]a,_1,
which in turn yields

1 3!
al——ZaO —Zao
1 1 3! 3!
1 3!
HB=——d =74
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and, in general,
—_1)*3!
o = (-1)*3! a,
(k +3)!
= (1) x" = (—=1)"3Ix”
Hence, x)=a,x|1+3! =qx )y ——
N =a, { Z‘l(n+3)! 0 25 (n+3)!

which can be simplified to

3
9,(x) :%(2—2x+x2 —2e™) 3)

Find the general solution near x = O to the differential equation given in Problem 28.18.

One solution is given by (3) in Problem 28.18 for the indicial root A, = 1. If we try the method of Frobenius
with the indicial root A, = -2, recurrence formula (2) of Problem 28.18 becomes

n n n—1 (])

and, in general, @, = (—1)ay/k!. Therefore,

_ 1 1 =D*
= 2 —_— —_— 2 e & e
¥y, (x)=a,x {1 1!x+2!x + ot 2 X"+

e (D)X o
=a,x’ (— =a,x e
This is precisely in the form of (28.9), with d_; =0 and d, = (—1)"ay/n!. The general solution is

y=ci(X) + epya(%)

Find a general expression for the indicial equation of (28.7).

Since x =0 is a regular singular point; xP(x) and x*>Q(x) are analytic near the origin and can be expanded in
Taylor series there. Thus,

xP(x) = Zp,,X" =p, +px+pxt
n=0

x*0(x) = anx" =q, +qx+q,x +
n=0

Dividing by x and x2, respectively, we have
PE)=pxt +pr+pxt o QR =g g gyt
Substituting these two results with Eqs. (28.2) through (28.4) into (28.1) and combining, we obtain
MR - Dag + Aagpy + aggel + -+ =0
which can hold only if
@[ A+ (po— DA+ gol =0
Since ay # 0 (aq 18 an arbitrary constant, hence can be chosen nonzero), the indicial equation is

A+ (po— DA+ qo=0 o)
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Find the indicial equation of x%y” + xe*y’ + (> — 1)y = 0 if the solution is required near x = 0.

Here

x

P=% and Q@) =x-—
X X

and we have
2z
xP(x):e":1+x+%+~~

Q) =x"—1==14+0x+0x" +1x° + 0x* +---

from which p, =1 and ¢, = —1. Using (/) of Problem 28.20, we obtain the indicial equation as A> — 1= 0.

Solve Problem 28.9 by an alternative method.

2.0

The given differential equation, 3x*y” — xy" + y =0, is a special case of Euler’s equation

bx™y W + by X"y D 4 1 by 4 bixy + boy = 9(%) o)

where b;(j=0,1, ..., n) is a constant. Euler’s equation can always be transformed into a linear differential equation
with constant coefficients by the change of variables

z=Inx or x=¢ )]
It follows from (2) and from the chain rule and the product rule of differentiation that
d_dds_1dy_.dy 5
dx dzdx xdz dz
dy_ddy)_df, . dy) [df, .dv)|e
ax*  dx\dx | dx dz dz dz || dx
2 2
=|-e* ﬂ +e d—z ei=e" d—Z —e ﬂ “
dz dz dz dz

Substituting Egs. (2), (3), and (4) into the given differential equation and simplifying, we obtain

d’y 4dy 1
_Z — __y +—y= 0

dz" 3dz 3

Using the method of Chapter 9 we find that the solution of this last equation is y = ;€% + c,¢/V®% Then using (2)
and noting that &7 = (¢%)!3, we have as before,

y=cx+cx!?

Solve the differential equation given in Problem 28.12 by an alternative method.

The given differential equation, x>y” — xy’ + y =0, is a special case of Euler’s equation, (/) of Problem 28.22.

Using the transformations (2), (3), and (4) of Problem 28.22, we reduce the given equation to

2
ﬂ_zd_+

=0
dz* dz Y

The solution to this equation is (see Chapter 9) y = ¢;€* + ¢,z¢%. Then, using (2) of Problem 28.22, we have for the
solution of the original differential equation

y=cx+cxInx

as before.
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28.24. Find the general solution near x = O of the hypergeometric equation
x(1-xpy"+[C—(A+B+ 1)x]y’— ABy=0

where A and B are any real numbers, and C is any real nonintegral number.

Since x = 0 is a regular singular point, the method of Frobenius is applicable. Substituting, Eqs. (28.2) through
(28.4) into the differential equation, simplifying and equating the coefficient of each power of x to zero, we obtain

A2+ (C-DA=0 )

as the indicial equation and

_(k+n)(k+n+A+B)+ABa

. )
A+n+DA+n+0C)

n+1

as the recurrence formula. The roots of (7) are A; =0and A, =1 — C; hence, A, — A, = C — 1. Since C is not an integer,
the solution of the hypergeometric equation is given by Egs. (28.5) and (28.6).
Substituting A = 0 into (2), we have

_n(n+A+B)+ABa
i+ Dhn+C) "

n+1

which is equivalent to

_(A+n)(B+n)a

n+1 n

1+ D(n+0)
Thus
AB  AB
al = ?ao = an
_(A+D)(B+1)  A(A+DBB+1)
STy T aicic+ny o

C(A+2)(B+2)  AA+D(A+2)BB+1)(B+2)
To3c+2 T 31C(C + 1)(C +2)

0

and y1(x) = apF (A, B; C; x), where

F(A,B;c;x):1+£x+wx2
1c 21C(C+1)
, AA+DA+DBBHIBD) ;5

31C(C+1)(C +2)

The series F(A, B; C, x) is known as the hypergeometric series; it can be shown that this series converges for —1 <x < 1.
It is customary to assign the arbitrary constant ay the value 1. Then y;(x) = F(4, B; C; x) and the hypergeometric series
is a solution of the hypergeometric equation.

To find y,(x), we substitute A = 1 — C into (2) and obtain

_(+1-O)nt1+A+B-CO)+ AB
n+2-C)n+1) "

_(A-Cn+h(B-Ctntl)
B n+2-C)n+1) "

n+1

or n+1

Solving for a, in terms of a,, and again setting a; = 1, it follows that
V@) =x'"CFA-C+1,B-C+1;2-C;x)

The general solution is y = ¢;y(X) + ¢, y5(X).
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Supplementary Problems

In Problems 28.25 through 28.33, find two linearly independent solutions to the given differential equations.

28.25. 2%y —xy' + (1 —x)y=0 28.26. 2%+ (P —x)y +y=0

28.27. 3% -2y —(2+xH)y=0 28.28. xy'+y —-y=0

28.29. 2y +xy +:5y=0 28.30. X+ (x—x)y —y=0

2831. xy"—(x+1)y—y=0 2832 4xly + (dx+ 20y +(Bx—1Dy=0

28.33. Y+ (x> -3x)y —(x—4)y=0

In Problem 28.34 through 28.38, find the general solution to the given equations using the method described in Problem 28.22.
2834, 4%y +4xy’ —y=0 28.35. x%y’—3xy +4y=0

28.36. 2x%y"+ 1lxy’ +4y=0 2837. x%'-2y=0

28.38. X2y —6xy' =0
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